跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴科印
Ko-Yin Lai
論文名稱: FIR濾波器於二冪次係數空間之研究與分析
Design of digital FIR filters with power-of-two coefficients
指導教授: 林銀議
Y.I. Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 69
中文關鍵詞: 數位濾波器二冪次係數模擬退火擬牛頓法塔布搜尋法配置法則
外文關鍵詞: digital filter, power of two, SA, DFP, tabu search, allocation
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數位濾波器(Digital Filter)在通訊的領域上應用非常廣泛,且因為FIR濾波器具有線性相為位(Linear Phase)及穩定性(Stability)等優點,故本論將僅對FIR濾波器作一探討。在硬體實現上,面積、速度、功率通常是IC設計者作取捨的主要考量。這裡我們希望利用最佳化演算法於二冪次(Power-of-Two)係數空間中搜尋一組最佳FIR濾波器係數,如此在實現上,我們可以移位暫存器取代乘法器,非旦面積及功率都可減少,且在速度上更可提高。而本論文提出模擬退火(SA)結合擬牛頓法(DFP),並與近年來廣受探討的塔布搜尋法(Tabu Search)於直接式(Direct Form)、串聯式(Cascade Form)、 並使用配置法則(Allocation)作一比較。


    Design of digital FIR filters with power-of-two coefficients

    目錄 第一章 緒論 1 1.1 研究的背景與動機 1 1.2 研究目的 2 第二章 最佳化演算法 3 2.1 最佳化演算法之演進 3 2.2 模擬退火法則結合擬牛頓法 6 2.2.1 模擬退火(SA)法則 6 2.2.2 擬牛頓法則(DFP) 8 2.3 塔布搜尋法 13 2.4 結論 16 第三章 FIR濾波器於二冪次係數之設計與分析 18 3.1 FIR濾波器於二冪次係數空間之設計 18 3.1.1 二冪次係數空間之設計 19 3.1.2 加入比例常數(Gain)作調整比例大小(Scaling) 21 3.1.3 SA_DFP/Tabu Search 最佳化設定與分析 26 3.2 直接式FIR低通濾波器於二冪次係數之分析 32 3.3 串聯式FIR低通濾波器於二冪次係數之分析 40 3.3.1 限制串聯架構量化雜訊 40 3.3.2 SA_DFP/Tabu Search效能之分析 41 第四章 FIR濾波器於二冪次係數配置之設計分析 50 4.1 FIR濾波器於二冪次配置係數之設計 50 4.1.1 二冪次係數項配置法則 51 4.1.2 SA_DFP/Tabu Search配置法之設計 52 4.2 直接式FIR低通濾波器於二冪次係數配置之分析 58 第五章 總結 66 參考文獻 67

    參考文獻
    【1】T. W. Parks ,C. S. Burrus , Digital Filter Design , New York , Wiley , 1989.
    【2】Metropolis , N., Rosenbluth, A. Rosenbluth, M., Teller A. and Teller, E.,“Equation of State Calculations by Fast Computing Machines”,Journal of Chen. Physics, Vol.21, pp.1087-1092,1953.
    【3】Jepsen, D.W. and Gelatt Jr., C. D.,“Macro Placement by Monte Carlo Annealing”, Processings of IEEE Internatonal Conference on Computer Design, Port Chester, pp.495-498,Nov.,1983.
    【4】Kirkpatrick, S., Gelatt Jr., C.D. and Vecchi, M.P.,”
    Optimization by Simulated Annealing”, Science, Vol.220, No.4598, pp.671-680, 1983.
    【5】Kirkpatrick, S., “Optimization by Simulated Annealing :
    Quantitative Studies”, Journal of Statis. Phys., Vol.34, pp.975-986, 1984.
    【6】L. Ingber and B. Rosen,“Genetic algorithms and very fast simulated reannealing:A comparison”,Math. Comput. Modelling, Vol. 16, Nov. 11,pp. 87-100, 1992
    【7】F. Glover,“Tabu Search – Part I”, ORSA Journal of Computing, Vol.1, no.3, pp.190-206, Summer 1989.
    【8】F. Golver,“Tabu Search – Part II”, ORSA Journal of Computing, Vol.2, no.1, pp.4-32, Winter 1990.
    【9】Liaw, C.F.,”A tabu Search Algorithm for the Open Shop Scheduling Problem”, Computers and Operations Reseach, 26, 109-126, 1999.
    【10】Song, J.S. and T.E. Lee,”A Tabu Search Procedure for Periodic Job Shop Scheduling”, Computers & Industrial Engineering, 30, 433-447, 1996.
    【11】Wen, U.P. and I.C. Yeh,”Tabu Search Methods for the Flow Shop Sequencing Problem”, Journal of the Chinese Institute of Engineers, 20, 465-470, 1997.
    【12】S. Traferro, F. Capparelli, F. Piazza and A. Uncini,”
    Efficient allocation of power-of-two terms in FIR digital filter design using tabu search” , IEEE International Symposium on, Vol.3, pp. 411 –414, 1999
    【13】葉錦智,”探索式帶正負號二幕次係數線性相位有限脈衝響應濾波器之設計法”,華梵大學機電工程研究所碩士學位論文,2000
    【14】Q. Zhao and Y. Tadokoro,“A simple design of FIR filters with powers-of-two coefficients”, IEEE Trans. Circuits Syst., vol.35, pp.566-570, May 1988
    【15】N. Benvenuto, M. Marchesi, and A. Uncini,“Applications of simulated annealing for the design of design of special digital filters”, IEEE Trans. Siganl Processing, vol.40, pp.323-332, Feb. 1992
    【16】黃盟欽,”數位式上昇餘旋函數濾波器最佳化設計”,中央大學電機工程研究所碩士論文,2001
    【17】Y.C. Lim and B. Liu,“Design of Cascade Form FIR Filters with Discrete Valued Coefficients”, IEEE Trans. On Acous. Speech. and Signal Processing, Vol.36, NO. 11. November 1988
    【18】Y.C. Lim and S.R. Parker,“FIR filter design over a discrete powers-of-two coefficient space”, IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-31, pp.583-591, June 1983.
    【19】Y.C. Lim and S.R. Parker,”Design of discrete-coefficient-
    value linear phase FIR filters with optimum normalized peak ripple magnitude”, IEEE Trans. Circuit Syst., Vol.37, pp.1480-1486, Dec. 1990
    【20】R. Cemes and D. Ait-Boudaoud, “Genetic approach to design of multiplierless FIR filters”, Electronics Letters, vol.29, pp.2090-2091, Nov.25, 1993
    【21】C.-L. Chen and A.N. Willson Jr.,”A trellis search algorithm for the design of FIR filters with sighed powers-of-two coefficients”, IEEE Trans. Circuits Syst.II, Vol.46, pp.29-39, Jan. 1999
    【22】S. Powell and P. Chau, “Efficient narrowband FIR and IFIR filters based on power-of-two sigma-delta-coefficient truncation”, IEEE Trans. Circuits Syst.II, vol.41, pp.497-505, Aug.1994
    【23】Y.C. Lim, R. Yang, D. Li, J. Song,”Signed Power-of-Two Term Allocation Scheme for the Design of Digital Filters”, IEEE. Trans. on Circuit and Syst.-II:analog and digital signal processing, Vol.46, No 5, MAY 1999

    QR CODE
    :::