跳到主要內容

簡易檢索 / 詳目顯示

研究生: 詹佳晉
Jia-jin Jan
論文名稱: 結合模糊控制並以反電動勢為基礎之無感測永磁同步馬達驅動系統
Combining fuzzy control with back-EMF-based sensorless control of PMSM
指導教授: 徐國鎧
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: 永磁同步馬達無感測轉速控制模糊理論
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文為針對永磁同步馬達無位置感測元件驅動器設計與實現,以馬達反電動勢為基礎,建立估測電路取代位置感測器以提供馬達轉子位置和轉速資訊。馬達於許多實際應用的場合中,其內部參數如黏滯係數、轉動慣量等並非定值,並且也要考量負載以及轉速的變化,因此本文結合了模糊控制理論,藉以改善固定增益參數之控制器因為上述情況所帶來的不準確性。
      本論文以dsPIC30F4011微控制器為整個系統的主要核心,並與智慧型功率模組為基礎實現全數位化之無感測永磁同步馬達驅動系統,能達到簡化電路,並且降低整體系統的開發成本。


    In this thesis, design and implement for sensorless sureface-mounted permanent magnet synchronous motor (SPMSM) drive are discussed. Based on the back electromotive force in motors, an estimation circuit is established to replace hall effect elements which provide the information of the rotor position and the rotor speed. In many practical applications, the motor parameters like damping coefficient and moment of inertia are time-varying. Also, the motor speed and load variance must be considered. Therefore, combining fuzzy theory is proposed in this thesis to improve the inaccuracy of PID controller because aforementioned conditions.
    This thesis used a full-digital drive based on intelligent power module and digital signal processor. This drive not only efficiently simplifies the circuit, but also reduces the cost of the system.

    摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 內容大綱 2 第二章 永磁同步馬達介紹 3 2.1 前言 3 2.2 永磁同步馬達結構及運轉原理 3 2.3 永磁同步馬達數學模型 6 2.3.1  座標轉換 6 2.3.2 各座標系下之數學模型 9 2.4 空間向量脈波寬度調變 15 第三章 無感測驅動器實現 24 3.1 前言 24 3.2 磁場導向控制架構 25 3.3 高頻訊號注入法 26 3.4 以反電動勢為基礎之估測訊號 32 3.5 轉子角度誤差追蹤 35 3.6 速度控制 37 3.6.1 比例積分控制器 37 3.6.2 轉速估測方法 38 第四章 估測器改善策略 41 4.1 前言 41 4.2 模糊歸屬度函數 42 4.3 模糊規則庫建立 44 4.4 模糊推論工場 46 4.5 解模糊化 48 第五章 硬體架構與實驗結果 50 5.1 數位訊號微控制器 50 5.2 系統電路介紹 52 5.2.1 電源供應電路 53 5.2.2 變頻器驅動電路 54 5.2.3 電流回授電路 57 5.2.4 編碼器訊號 58 5.2.5 微控制器周邊電路 60 5.2.6 馬達規格與實驗平台 61 5.3 實驗結果 62 5.3.1 高頻訊號注入法 63 5.3.2 模糊控制實驗結果 66 5.3.3 轉速範圍探討 75 第六章 結論與未來展望 78 參考文獻 79 附錄A 83

    [1] Y. A.-R. I. Mohamed, “Design and implementation of a robust current control scheme for a PMSM vector drive with a simple adaptive disturbance observer,” IEEE Trans. Ind. Electron., Vol.54, No.4, August 2007.

    [2] J. Lee, J. Hong, K. Nam, R. Ortega, L. Praly, and A. Astolfi, “Sensorless control of surface-mount permanent-magnet synchronous motors based on a nonlinear observer,” IEEE Trans. Power Electron., Vol.25, No.2, February 2010.

    [3] R. Dhaouadi, N. Mohan, and L. Norum, “Design and implementation of an extended Kalman filter for the state estimation of a permanent magnet synchronous motor,” IEEE Trans. Power Electron., Vol.6, No.3, July 1991.

    [4] S. Bolognani, M. Zigliotto, and M. Zordan, “Extended-range PMSM sensorless speed drive based on stochastic filtering,” IEEE Trans. Powerm Electron., Vol.16, No.1, January 2001.

    [5] C. Y. Wang and L. Y. Xu, “A novel approach for sensorless control of PM machines down to zero speed without signal injection or special PWM technique,” IEEE Trans. Power Electron., Vol.19, No.6, November 2004.

    [6] J. S. Kim and S. K. Sul, “New approach for high-performance PMSM drives without rotational position sensors,” IEEE Trans. Power Electron., Vol.12, No.5, September 1997.

    [7] M. Tomita, T. Senjyu, S. Doki, and S. Okuma, “New sensorless control for brushless DC motors using disturbance observers and adaptive velocity estimations,” IEEE Trans. Ind. Electron., Vol.45, No.2, April 2007.

    [8] Z. Chen, M. Tomita, S. Ichikawa, S. Doki, and S. Okuma,“Sensorless control of interior permanent magnet synchronous motor by estimation of an extended electromotive force,” Proc. IECON 00’, 2000.

    [9] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on an extended EMF model and initial position estimation,” Proc. IECON 03’, 2003.

    [10]S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Appl., Vol.42, No.5, September/October 2006.

    [11]H. Kim, M. C. Harke, R. D. Lorenz, “Sensorless control of interior permanent-magnet machine drives with zero-phase lag position estimation,” IEEE Trans. Ind. Appl., Vol.39, No.6, November/December 2003.

    [12]O. Wallmark and L. Harnefors, “Sensorless control of salient PMSM drives in the transition region,” IEEE Trans. Ind. Electron., Vol.53, No.4, August 2006.

    [13]L. Harnefors and H. P. Nee, “A general algorithm for speed and position estimation of AC motors,” IEEE Trans. Ind. Electron., Vol.47, No.1, February 2000.

    [14]F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, “Back EMF sensorless-control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., Vol.57, No.6, June 2010.

    [15]A. Consoli, G. Scarcella, and A. Testa, “Industry application of zero-speed sensorless control techniques for PM synchronous motors,” IEEE Trans. Ind. Appl., Vol.37, No.2, March/April 2001.

    [16]B. H. Kenny and P. E. Kascak, “Sensorless control of permanent magnet machine for NASA flywheel technology development,” NASA, Washington, DC, Tech. Rep. TM-2002-211726, July 2002.

    [17]H. W. De Kock, M. J. Kamper, and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., Vol.24, No.8 August 2009.

    [18]R. S. Wu and G. R. Slemon, “A permanent magnet motor drive without a shaft sensor,” IEEE Trans. Ind. Appl., Vol.21, No.5, September/October 1991.

    [19]N. Chen, Z. Wang, S. Yu,W. Gui, and Y. Guo, “A new starting method of sensorless PMSM motors based on STM32F103B,” in Proc. 29th Chinese Control Conf., 2010.

    [20]M. Fatu, R. Teodorescu, I. Boldea, and G. D. Andreescu, “I-F starting method with smooth transition to EMF based motion-sensorless vector control of PM synchronous motor/generator,” in Conf. Rec. Powe Electron. Spec. Conf., 2008.

    [21]A. Stirban, I. Boldea, G.-D. Andreescu, D. Iles, and F. Blaabjerg, “Motion sensorless control of BLDC PMmotor with offline FEM info assisted state observer,” in 12th Int. Conf. OPTIM, 2010.

    [22]Z. Wang, K. Lu, F. Blaabjerg, “A simple startup strategy based on current regulation for back-EMF-based sensorless control of PMSM,” IEEE Trans. Power Electron., Vol.27, No.8 August 2012.

    [23]劉昌煥,「交流電機控制」,第四版,東華書局,民國97年。

    [24]王進德,「類神經網路與模糊控制理論入門與應用」,全華科技圖書,民
    國96年。
    [25]王文俊,「認識Fuzzy」,第三版,全華科技圖書,民國97年。
    [26]曾百由,dsPIC數位訊號控制器原理與應用,增訂版,宏友圖書,民國98年。
    [27]dsPIC30F4011/4012 Datasheet, Microchip, 2005.

    [28]FSBB20CH60C Smart Power Module, Fairchild Semiconductor, Datasheet, February 2008.

    [29]Single-Channel: 6N137 High Speed 10MBit/s Logic Gate Optocouplers, Fairchild Semiconductor, Datasheet, January 2011.

    [30]ACS712, Fully Integrated, Hall Effect-Based Linear Current Sensor with 2.1kVRMS Voltage Isolation and a Low-Resistance Current Conductor, Allegro MicroSystems, Inc., Datasheet, 2006.

    [31]D. P. Marcetic and E. M. Adzic, “Improved three-phase current reconstruction for induction motor drives with dc-link shunt,” IEEE Trans. Ind. Electron., Vol.57, No.7, July 2010.

    [32]K. Sun, Q. Wei, L. Huang, and K. Matsuse, “An overmodulation method for PWM-inverter-fed IPMSM drive with single current sensor,” IEEE Trans. Ind. Electron., Vol.57, No.10, October 2010.

    [33]Y. Cho, T. LaBella, and J. S. Lai, “A three-phase current reconstruction strategy with online current offset compensation using a single current sensor,” IEEE Trans. Ind. Electron., Vol.59, No.7, July 2012.

    QR CODE
    :::