跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳璞
Pu Chen
論文名稱: 基於SVD模型之變形 - WSVD 與 PSVD
Variants of the SVD model - WSVD and PSVD
指導教授: 施國琛
Timothy K. Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 軟體工程研究所
Graduate Institute of Software Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 59
中文關鍵詞: 推薦系統SVD模型矩陣分解模型
外文關鍵詞: recommender system, SVD model, matrix factorization method
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著網際網路的發展,人們面臨越來越多的選擇,例如購物網站中商品的選擇,影音網站中該看哪些影片的選擇。推薦系統在這些網站中扮演幫人們迅速決定的重要角色。在這篇論文中,我們針對在推薦系統中的知名方法潛在因子模型 (Latent factor model)進行分析與改良,並提出了加權潛在因子模型和多項式潛在因子模型。這兩個模型分別賦予了傳統潛在因子模型權重參數和非線性的特徵組合。我們將這兩個模型對五種開放資料集進行了許多實驗,發現相較於傳統模型,這兩個模型能夠有更好地預測效果。由於我們提出的模型是基於潛在因子模型的變體,我們的模型也可以應用於其他潛在因子模型上,如SVD++模型和NMF模型。


    With the development of the Internet, people are faced with more and more choices, such as the choice of products in shopping websites and the choice of which videos to watch in video and audio websites. The recommendation system plays an important role in these sites to help people decide quickly. In this paper, we analyze the well known method -- the latent factor model in the recommendation system, and propose the weighted latent factor model and the polynomial latent factor model. These two models respectively give the traditional latent factor model weights and nonlinear feature combinations. We conducted many experiments on these two models for the five open data sets and found that the two models have better predictive effects than the traditional models. Since our proposed model is based on the latent factor models, our model can also be applied to other latent factor models such as SVD++ model and NMF model.

    摘要 i Abstract ii List of Figures v List of Tables vi 1 Introduction 1 2 Method 4 2.1 Preliminaries 4 2.1.1 Problem definition 4 2.1.2 Latent factor model 5 2.1.2.1 Basic latent factor model 5 2.1.2.2 Biased latent factor model 6 2.1.2.3 Learning algorithms 7 2.2 Weighted latent factor model 9 2.2.1 WSVD Learning algorithms 10 2.2.2 Vanishing gradient 11 2.2.3 Gradient clipping 14 2.2.4 Comparison between the WSVD model and the SVD model 14 2.3 Polynomial latent factor model 15 2.3.1 PSVD Learning algorithms 16 2.3.2 Comparison between the PSVD model and the SVD model 18 2.4 Library implementation 18 3 Experiment 21 3.1 Dataset 21 3.2 Experiment environment 22 3.3 Optimization speed of the WSVD model 22 3.4 Overall MSEs result 23 3.5 Overall MSEs result – SVD with comparable number of learnable parameters 26 3.6 Training time 26 3.7 Non-active users and long-tailed items 27 3.8 Grouped weighted latent factor model 31 4 Related work 34 4.1 Content filtering 34 iii Contents iv 4.2 Collaborative filtering 35 4.2.1 Memory-based approach 36 4.2.2 Model-based approach 36 4.3 SVD++ 38 4.4 Factorization Machines 39 4.5 Neural Collaborative Filtering 40 4.6 Hyper-parameter optimization 40 4.6.1 Grid search 41 4.6.2 Random search 42 4.6.3 Bayesian optimization 42 5 Conclusion and future work 45 References 47

    [1] Arora, S., Cohen, N., and Hazan, E. On the Optimization of Deep Networks:
    Implicit Acceleration by Overparameterization. ArXiv e-prints (Feb. 2018).
    [2] Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D., and
    Smith, K. Cython: The best of both worlds. Computing in Science Engineering 13,
    2 (2011), 31 –39.
    [3] Bergstra, J., and Bengio, Y. Random search for hyper-parameter optimization.
    J. Mach. Learn. Res. 13, 1 (Feb. 2012), 281–305.
    [4] Chang, C.-C., and Lin, C.-J. Libsvm: A library for support vector machines.
    ACM Trans. Intell. Syst. Technol. 2, 3 (May 2011), 27:1–27:27.
    [5] Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye,
    H., Anderson, G., Corrado, G., Chai, W., Ispir, M., Anil, R., Haque, Z.,
    Hong, L., Jain, V., Liu, X., and Shah, H. Wide & deep learning for recommender
    systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender
    Systems (New York, NY, USA, 2016), DLRS 2016, ACM, pp. 7–10.
    [6] Dooms, S., De Pessemier, T., and Martens, L. Movietweetings: a movie
    rating dataset collected from twitter. In Workshop on Crowdsourcing and Human
    Computation for Recommender Systems, CrowdRec at RecSys 2013 (2013).
    [7] Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online
    learning and stochastic optimization. J. Mach. Learn. Res. 12 (July 2011), 2121–
    2159.
    [8] Guo, G., Zhang, J., and Yorke-Smith, N. A novel bayesian similarity measure
    for recommender systems. In Proceedings of the 23rd International Joint Conference
    on Artificial Intelligence (IJCAI) (2013), pp. 2619–2625.
    47
    [9] Harper, F. M., and Konstan, J. A. The movielens datasets: History and context.
    ACM Transactions on Interactive Intelligent Systems 5, 4 (2016), 19.
    [10] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. Neural collaborative
    filtering. In Proceedings of the 26th International Conference on World Wide
    Web (Republic and Canton of Geneva, Switzerland, 2017), WWW ’17, International
    World Wide Web Conferences Steering Committee, pp. 173–182.
    [11] Koren, Y. Factorization meets the neighborhood: A multifaceted collaborative
    filtering model. In Proceedings of the 14th ACM SIGKDD International Conference
    on Knowledge Discovery and Data Mining (New York, NY, USA, 2008), KDD ’08,
    ACM, pp. 426–434.
    [12] Linden, G., Smith, B., and York, J. Amazon.com recommendations: item-toitem
    collaborative filtering. IEEE Internet Computing 7, 1 (Jan 2003), 76–80.
    [13] Lops, P., de Gemmis, M., and Semeraro, G. Content-based Recommender
    Systems: State of the Art and Trends. Springer US, Boston, MA, 2011, pp. 73–105.
    [14] Luo, X., Zhou, M., Xia, Y., and Zhu, Q. An efficient non-negative matrixfactorization-based
    approach to collaborative filtering for recommender systems.
    IEEE Transactions on Industrial Informatics 10, 2 (May 2014), 1273–1284.
    [15] Rendle, S. Factorization machines. In Data Mining (ICDM), 2010 IEEE 10th
    International Conference on (2010), IEEE, pp. 995–1000.
    [16] Snoek, J., Larochelle, H., and Adams, R. P. Practical bayesian optimization
    of machine learning algorithms. In Advances in neural information processing systems
    (2012), pp. 2951–2959.
    [17] Takács, G., Pilászy, I., Németh, B., and Tikk, D. Matrix factorization and
    neighbor based algorithms for the netflix prize problem. In Proceedings of the 2008
    ACM Conference on Recommender Systems (New York, NY, USA, 2008), RecSys
    ’08, ACM, pp. 267–274.
    48
    Reference 49
    [18] Wang, H., Wang, N., and Yeung, D.-Y. Collaborative deep learning for recommender
    systems. In Proceedings of the 21th ACM SIGKDD International Conference
    on Knowledge Discovery and Data Mining (New York, NY, USA, 2015), KDD ’15,
    ACM, pp. 1235–1244.
    [19] Zeiler, M. D. ADADELTA: An Adaptive Learning Rate Method. ArXiv e-prints
    (Dec. 2012).
    [20] Ziegler, C.-N., McNee, S. M., Konstan, J. A., and Lausen, G. Improving
    recommendation lists through topic diversification. In Proceedings of the 14th International
    Conference on World Wide Web (New York, NY, USA, 2005), WWW ’05,
    ACM, pp. 22–32

    QR CODE
    :::