| 研究生: |
王善弘 Shan-Hong Wang |
|---|---|
| 論文名稱: |
3D列印熱塑性聚酯彈性體之製程研究 Research on manufacturing process of thermoplastic polyester elastomer by 3D printing |
| 指導教授: |
廖昭仰
Liao-Chao Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 熱塑性聚酯彈性體 、積層製造 、熔融沉積成型 、田口方法 |
| 外文關鍵詞: | Thermoplastic polyester elastomer, additive manufacturing, fused deposition molding, Taguchi method |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科學技術的發展,新型塑料也不斷的被人們所發掘,且投入在日常生活、工業的開發中廣泛的應用;熱塑性聚酯彈性體(TPEE)被成功開發後,在實際的使用上具有較高的性能,也擁有較高的性價比;和工程塑料相比,擁有較高強度的特點與較長的使用壽命。惟熱塑性聚酯彈性體由於質地軟,不易以機械加工的方式成型,現有成型方法大都使用擠出、注射、吹塑成型,生產前需準備成型所需要的模具與周邊配件;但樣品設計初期至導入量產過程中常會發生設計變更需求,若未能在量產前進行樣品製作、測試,找出需修改的地方而貿然投入模具製作,後續衍生的模具修改需求,所耗費的失敗成本與模具修改等待的時間成本是一筆不小的開支。本文應用積層製造技術(Additive Manufacturing, AM)與熱塑性聚酯彈性體搭配田口方法分析,得到熱塑性聚酯彈性體最佳的彈性能模數。
綜合上述,本研究是使用熔融沉積成型技術(Fused Deposition Modeling, FDM)列印熱塑性聚酯彈性體,藉由列印設備所能控制的參數獲得最佳彈性能模數。本實驗所使用的製程參數為噴頭直徑、噴頭溫度、層厚高度;以田口式實驗設計,應用L4直交表進行實驗,並且利用變異數分析(Analysis of variance, ANOVA)找出影響結果較顯著的控制因子。經由實驗結果,在彈性能模數方面由品質特性反應表的S/N反應圖顯示出,最佳之組合為噴頭直徑0.6mm、噴頭溫度230°C、層厚高度0.15mm。經由變異數分析找出顯著控制因子,比對品質特性反應表、ANOVA所得參數二者比對最佳化組合的結果相同,如此可驗證實驗準確性。
With the development of science and technology, new plastics are constantly being discovered by people, and they are widely applied in daily life and industrial development; after the successful development of thermoplastic polyester elastomer (TPEE), it has higher performance and good value in practical use. Compared with engineering plastics, it has feature of higher strength and longer lifetime. However, thermoplastic polyester elastomers are not easy to be molded by mechanical processing due to their soft texture. Existing molding methods mostly use extrusion, injection, and blow molding. The molds and peripheral accessories required for molding must be prepared before production. However, the design change requests often occur in the process of initating sample design till mass production. If you fail to conduct sample production and testing before mass production, figure out the places that need to be modified and rush into mold manufacturing, subsequent derivative mold modification needs, the cost of failure and mold failure Modifying the time cost of waiting is not a small expense. This article applies additive manufacturing technology (AM) and thermoplastic polyester elastomer with Taguchi method analysis to obtain the best modulus of resilience of thermoplastic polyester elastomer.
Based on the above, this study uses Fused Deposition Modeling (FDM) to print thermoplastic polyester elastomers, and obtains the best elastic modulus through the parameters that can be controlled by the printing equipment. The process parameters used in this experiment are nozzle diameter, nozzle temperature, and layer thickness; Taking Taguchi experimental as design, applying L4 orthogonal table for the experiment, and using analysis of variance (ANOVA) to figure out significant control factor which affects the result. Through the experimental results, in terms of elastic modulus, the S/N response diagram of the quality characteristic response table shows that the best combination is nozzle diameter 0.6 mm, nozzle temperature 230°C, and layer thickness 0.15 mm. According to the analysis of variance to find the significant control factors, comparing the quality characteristics response table and the parameters obtained by ANOVA, the results of the optimized combination of the two comparisons are the same, so that the accuracy of the experiment can be verified.
[1] H. I. Medekkub-Castillo and J.E.P Torres, "Rapid prototyping and manufacturing: A review of current technologies", in 2009 ASME International Mechanical Engineering Congress and Expositionm IMECE2009, November 13, 2009 – Nevember 19, 2009, Lake Buena Vista, FL, United states, pp. 609-621, 2010.
[2] 趙仲卿,聚酯聚醚嵌段共聚物化工新型材料,1988,10
[3] Sheivers J C(to Dupont).USP:3023192,1962-02-27.
[4] Witsiepe W K(to Dupont).USP:3651014,1972-03-21.
[5] Witsiepe W K.(to Dupont).USP:3763109,1973-10-02.
[6] Witsiepe W K.(to Dupont).USP:3755146,1973-10-16.
[7] 何曉東,熱塑性聚酯彈性體研究進展,2010.
[8] 肖勤莎,羅毅 熱塑性聚脂彈性體[J] 彈性體,1998.
[9] 李鑫,邵茂官和張冰,「快速成型與製造技術發展現狀與趨勢」,北京化工大學技術文章,2008.
[10] C. L. Lim, 快速成型原理與應用,郭啟全和鄭正元譯,高立,2004.
[11] 葉雲鵬,鄭正元,智慧機械與數位製造3D列印的發展,科儀新知222期,民國109
年3月。
[12] S. Ahn, M. Monterom, D. Odell, S. Roundy and P.K. Wright, “Anisotropic material properties of fused deposition modeling ABS”, Rapid Prototyp Journal, Vol.8, pp.248-257, 2002.
[13] S. Upcraft and R. Fletcher, ” The rapid prototyping technologies”, Assembly Automation, Vol.23, pp.318-330, 2003.
[14] E. Berry, J.M. Brown, M. Connell, C.M. Craven, N.D. Efford, A. Radjenovic and M.A. Smith, “Preliminary experience with medical applications of rapid prototyping by selective laser sintering”, Medical Engineering&Physics, Vol.19, pp.90-96, 1997.
[15] Y. Fana, H. Nishid, Y. Shirai, Y. Tokiwa and T. Endo, “Thermal degradation behaviour of poly(lactic acid) stereocomplex”, Polymer Degradation and Stability, Vol.86, pp.197-208, 2004.
[16] F. Carrasco, P. Pagès, J. Gámez-Pérez, O.O. Santana and M.L. Maspoch, ” Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties” Polymer Degradation and Stability, Vol.95, pp.116-125, 2010.
[17] 郭木城,高韌度聚乳酸/熱塑性聚酯彈性體/二氧化矽複材開發,2020.
[18] 祝愛蘭,熱塑性聚脂彈性體的研究,合成纖維國家工程研究中心,2005.
[19] PEEK BIOMATERIALS HANDBOOK, S.M. Kurtz, British Library, 2012.
[20] T. Schmidt, F. Gärtner, H. Assadi and H. Kreye, “Development of a generalized parameter window for cold spray deposition”, Acta materialia, Vol. 54, pp. 729-742, 2006.
[21] 蘇朝墩,產品穩健設計:田口品質工程方法的介紹和應用,第二版,中華民國品質協會,民國88年。
[22] 李輝煌,田口方法品質設計的原理與實務,第四版,高立圖書有限公司,民國100年。
[23] J. Lunt, ” Large-scale production, properties and commercial applications of polylactic acid polymers”, Polymer Degradation and Stability, Vol.59, pp.145-152, 1998.
[24] R. Petzold, H.-F. Zeilhoferb and W.A. Kalender, ”Rapid prototyping technology in medicine - basics and applications”, Computerized Medical Imaging and Graphics,Vol. 23,pp.277-284, 1999.
[25] Gu. P and Li. L, “Fabrication of Biomedical Prototypes with Locally Controlled Properties Using FDM”, Cirp Annals-Manufacturing Technology, Vol.51, pp.181-184, 2002.
[26] B. Leukers, H.G. Lkan, S.H. Irsen, S. Milz, C. Tille, M. Schieker and H. Seitz, “Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing”, Journal Of Materials Science-Materials In Medicine, Vol.16, pp.1121-1124, 2005.
[27] W. Zeng, J. Ruan and T. Zhou, “Fused deposition modelling of an auricle framework for microtia reconstruction based on CT images”, Rapid Prototyping Journal, Vol.15, pp.280-284, 2008.
[28] D. Espalin, K. Arcaute, D. Rodriguez and F. Medina, “Fused deposition modeling of patient-specific polymethylmethacrylate implants”, Rapid Prototyping Journal, Vol.16, pp.164-173, 2010.
[29] K.B. Sagomonyants, M.L. J-Smith, J.N. Devine, M.S. Aronow and G.A. Gronowicz, “The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium”, Biomaterials, Vol.29, pp.1563-1572, 2008.
[30] B. Valentan, Z. Kadivnik, T. Brajlih, A. Anderson, Igor Drstvensek, “Processing Poly(Ether Etherketone) on a 3D Printer for Thermoplastic Modeling”, Materials and technology, Vol. 47, pp715-721, 2013.
[31] S.M. Kurtz and J.N. Devine, “PEEK biomaterials in trauma, orthopedic, and spinal implants”, Biomaterials, Vol.28, pp.4845-4869, 2008.
[32] F. Rodriguez, Principles of Polymer Systems, Taylor & Francis, London, 2003.
[33] R. May, Encyclopedia of Polymer Science and Engineering, John Wiley and Sons, New York, 1988.
[34] R.B. Rigby, Engineering Thermoplastics:Properties and Applications, Marcel Dekker, New York, 1985.
[35] 鄧佳,工藝條件對熱塑性聚酯彈性體單絲回彈性能的影響,2012.
[36] M.S. Abu Bakar, P. Cheang and K.A. Khor, “Mechanical properties of injection molded hydroxyapatite-polyetheretherketone Biocomposites”, Composites Science and Technology, Vol.63, pp421-425, 2003.
[37] Z. El-Qoubaa and R. Othman, “Strain rate sensitivity of polyetheretherketone’s compressive yield stress at low and high temperatures”, Mechanics of Materials, Vol.95, pp15-27, 2016.
[38] 劉偉均,材料實驗,國立編譯館,華泰書局,台北市,民國八十六年。
[39] 汪建民主編,材料分析,四版,民全書局,台北市,民國九十三年。
[40] 黃俊嘉,螺絲夾尾模具阻料溝斷面最佳化設計,碩士論文,國立高雄應用科技大學模具工程學系所,2011.
[41] 李輝煌,田口方法品質設計的原理與實務,第四版,高立圖書有限公司,民國100年。
[42] 洪桂香,熱塑性聚酯彈性體高分析新材料及其應用簡述,化學工業,2017.
[43] 李仁海,張建,黃娟, PBT固相縮聚的影響因素分析,合成技術及應用,2015.
[44] 王佩璋,李金平, PBT的固相增黏研究,改性與合金,2006.
[45] 鄧德純,顏志勇, PBT的固相縮聚,合成技術及應用,2000.
[46] Devotta I,Mashelkar RA. Modeling of polyethylene terephthalate reactors-x a comprehensive model for solid-state polycondensation process Chemical Engineering Science,1992.
[47] 吳德宏,「3D列印導電材料之屏蔽電磁干擾效果分析」,碩士論文,國立中央大學,民國109年。
[48] 吳柏論,利用熔融沉積成型技術列印聚醚醚酮模型之機械性質改善與表面改質研究,碩士論文,國立中央大學,民國108年。
[49] 董纪震,趙耀明,陳雪英等編.合成纖維生產工藝學(下册).第二版,北京:中國紡織出版社。
[50] 劉士榮,高分子加工,高立圖書公司.
[51] R. Anitha S. Arunachalam P. Radhakrishnan Critical parameters influencing the quality of prototypes in fused deposition modelling,2001.
[52] 戴搖廷,應用田口方法至TFT-LCD黑色矩陣檢測缺陷之參數設計,碩士論文,國立中興大學,民國107年。
[53] 葉志哲,田口方法於FDM快速原型機台成品精度改善之研究,碩士論文,東海大學,民國96年。