跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅鳴雁
Ming-yan Luo
論文名稱: 形態學影像處理硬體加速器設計與應用
Design and Application of Morphological Image Processing Hardware Accelerator
指導教授: 陳慶瀚
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 65
中文關鍵詞: 形態學影像處理硬體加速器
外文關鍵詞: Morphological Image Processing
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大多數形態學研究都強調硬體加速器,一旦需求改變或設計變更時,須重新設計硬體架構。本論文以MIAT(本實驗室)系統方法論,設計一個高彈性、可程式化的形態學影像處理硬體加速器架構。此架構包含多個串連的形態學核心模組(Mathematical Morphology Function Block, MMFB),以管線化控制提升各模組的效能。藉由軟體控制其硬體表現行為,達到高度彈性化且通用性之硬體加速器。在功能驗證中以條碼辨識為例,使用本硬體架構將影像侵蝕,刪除不必要之資訊,在使用膨脹運算還原回原始影像資料,最後經辨識得到其結果。本研究的貢獻在於軟硬體整合,以軟體控制其硬體表現行為,且經功能驗證後,其硬體架構可提供高彈性化及通用性。


    Most researches put emphasis on the hardware accelerator for mathematical morphology. If there is something wrong, the architecture will need to be redesigned. In this paper, MIAT (our laboratory) system methodology is used to design a high flexible and programmable morphological hardware accelerator. There are several morphology models (Mathematical Morphology Function Block) inside and pipeline control is used to improve each MMFB’s efficacy. We use software to control its hardware performance. By these means, it can achieve high flexibility and general purpose. We use barcode identification to verify this architecture. Noise is deleted with erosion operator and the origin image information is got by dilation. Finally, get the result with identification. The contribution of this paper is to integrate hardware and software. Control the hardware performance behavior with software. After functional verification, the hardware architecture provides high elasticity and general purpose.

    摘 要 I ABSTRACT II 目錄 . III 圖目錄 V 表目錄 VIII 第一章、緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 論文架構 3 第二章、形態學影像處理硬體架構 4 2.1 形態學基本運算 4 2.1.1 侵蝕 5 2.1.2 膨脹 6 2.1.3 斷開 7 2.1.4 閉合 7 2.2 形態學影像處理器 8 2.3 線性收縮式陣列(Linear Systolic Array) 11 2.4 Pseudo-MIMD 12 2.5 SE 分解 13 2.6 可重組形態學硬體加速器 14 第三章、形態學影像處理軟硬體整合設計 18 3.1 MIAT 系統設計方法論 18 3.2 軟硬體整合設計 22 3.3 MMFB 設計與實作 23 3.3.1 MMFB 架構 23 3.3.2 MMFB 遮罩運算 24 3.3.3 彈性控制器架構 26 3.4 Mask operation 遮罩運算 27 3.4.1 Sobel Operator 27 3.4.2 相鄰像素平均法(Neighborhood averaging) 28 3.5 管線化控制器(Pipeline Controller) 29 第四章、條碼辨識系統軟硬體整合設計與驗證 32 4.1 軟硬體開發環境 32 4.1.1 CMOS 影像感測器 32 4.1.2 FPGA 33 4.1.3 STM32F429 34 4.2 一維條碼辨識原理與演算法 35 4.3 條碼辨識系統設計 36 4.3.1 IDEF0 系統架構 37 4.4 系統合成 41 4.4.1 嵌入式硬體合成 41 4.4.2 軟硬體整合 44 4.5 結果與討論 45 4.5.1 執行時間 45 4.5.2 執行成果 45 第五張、結論與未來研究方向 48 5.1 結論 48 5.2 未來研究方向 48 參考文獻 49

    [1] F. Y. Shih, Image Processing and Mathematical Morphology: Fundamentals and Applications(1st ed.), 2009.
    [2] P. Soille, Morphological image analysis: principles and applications(2nd ed.), 2004.
    [3] G. Louverdis, and I. Andreadis, “Design and implementation of a fuzzy hardware structure for morphological color image processing”, IEEE Trans. Circuits Syst. Video Technol., 2003, vol.13, no.3, pp. 277–288.
    [4] T. R. Tuinstra, “Reading barcodes from digital imagery”, Ph.D. Dissertation, Cedarville University, 2006.
    [5] H. E. Lü and P. S. P. Wang, “A comment on “a fast parallel algorithm for thinning digital patterns”, Communications of the ACM, vol.29, no.3, p.239-242, March 1986.
    [6] F. Zana and J. C. Klein, “Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation”, IEEE Trans. Image Processing, vol. 10, no. 7, pp.1010 -1019, 2001.
    [7] C. H. Gebotys and R. J. Gebotys, “Complexities in DSP software compilation: performance, code size, power, retargetability”, Proceedings of the Thirty-First Hawaii International Conference on System Sciences, vol. 3, pp. 150-156, 1998.
    [8] S. M. H. Ho, S. C. L. Yuen, C. P. Hiu, T. C. P. Chau, A. Yan-Qing, P. H. W. Leong, O. C. S. Choy and P. Kong-Pang, “Structured ASIC: Methodology and comparison”, International Conference on Field-Programmable Technology (FPT), pp. 377-380, 2010.
    [9] S. Chakraverty, “Cosynthesis of multiprocessor architectures with high availability”, International Conference on VLSI Design, pp. 927-932, 2004.
    [10] L. Debowski, “A flexible DSP/FPGA-based hardware platform for power electronics”, Signal Processing Algorithms, Architectures, Arrangements, and Applications Conference Proceedings (SPA), pp. 30-35, 2009.
    [11] E. R. Urbach and M. H. F. Wilkinson, “Efficient 2-D grayscale morphological transformations with arbitrary flat structuring elements”, IEEE Trans. Image Process., vol.17, no.1, pp.1–8, 2008.
    [12] P. Dokládal and E. Dokládalová, “Computationally efficient, one-pass algorithm for morphological filters”, J. Vis. Commun. Image Represent, 2011, vol.22, no.5, pp. 411–420.
    [13] M. Hassoun, T. Meyer, P. Siqueira, J. Basart, and S. Gopalratnam, “A VLSI gray-scale morphology processor for real-time NDE image processing applications”, SPIE Image Algebra Morphological Image Processing, pp. 370–379, 1990.
    [14] R. Lin and E. K. Wong, “Logic gate implementation for gray-scale morphology”, Pattern Recognit. Lett, vol. 13, no. 7, pp. 481–487, 1992.
    [15] C. H. Chen and D. L. Yang, “Realization of morphological operations”, IEE Proc. Circuits Devices Systems, vol. 142, no. 6, pp. 364-368, 1995.
    [16] L. Lucke and C. Chakrabarti, “A digital-serial architecture for grayscale morphological filtering”, IEEE Trans. Image Processing, vol. 4, no. 3, pp. 387–391, Mar. 1995.
    [17] E. R. Dougherty and D. Sinha, “Computational gray-scale mathematical morphology on lattices (a comparator-based image algebra)—Part I: Architecture”, Real-Time Imag., vol. 1, pp. 69–85, 1995.
    [18] K. I. Diamantaras and S.Y. Kung, “A linear systolic array for real-time morphological image processing”, J. VLSI Signal Process. Syst., vol. 17, no. 1, pp. 43–55, 1997.
    [19] T. Kondo et al, “Pseudo MIMD array processor-AAP2”, in Proc. 13th Symp. Computer Architecture Conf. vol. 14, no. 2, pp. 330–337, 1986.
    [20] Thinking Machines Corp, Connection machine model, CM-2 tech. summary, Ver. 5.1, 1989
    [21] J. R. Nickolls, “The design of the MasPar MP-1: A cost-effective massively parallel computer”, in Proc. COMPCON, pp. 25–28, 1990.
    [22] O. Déforges, N. Normand, and M. Babel, “Fast recursive grayscale morphology operators: from the algorithm to the pipeline architecture”, J. Real-Time Image Process., vol. 8,no. 2, pp. 143–152, 2013
    [23] L. Vincent, “Morphological grayscale reconstruction in image analysis: applications and efficient algorithms”, IEEE Trans. Image Processing, vol. 2, no. 2, pp. 176-201, 1993.
    [24] N. Lazaros, G. C. Sirakoulis, and A. Gasteratos, “Review of stereo vision algorithms: from software to hardware”, International Journal of Optomechatronics, vol. 2, no. 4, pp. 435-462, 2008.
    [25] F. Y. Shih and O. R. Mitchell, “Threshold decomposition of gray-scale morphology into binary morphology”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, nol. 1, pp. 31-42, 1989.
    [26] J. Velten and A. Kummert, “Fpga-based implementation of variable sized structuring elements for 2d binary morphological operations”, IEEE International Symposium on Circuits and Systems, pp. 706-709. 2003.
    [27] C. H. Huang, “An FPGA-based Point Target Detection System using Morphological Clutter Elimination”, IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2436-2439, 2013.
    [28] 陳泓霖,“物件偵測嵌入式硬體加速器設計與實作”,2014
    [29] C. H. Chen, T. K. Yao, J. H. Dai, and C. Y. Chen, “RETRACTED: A pipelined multiprocessor system-on-a-chip (SoC) design methodology for streaming signal processing”, Journal of Vibration and Control, vol. 20, no. 2, pp. 163-178, 2014.
    [30] C. H. Chen, C. M. Kuo, C. Y. Chen, and J. H. Dai, ”The design and synthesis using hierarchical robotic discrete-event modeling”, Journal of Vibration and Control, vol. 19, no. 11, pp. 1603-1613, 2012.
    [31] Omni Vision OV7725 datasheet, Ver. 1, accessed date: 2015/10
    [32] Altera, BeMicro Max 10 User Manual, Ver. 1, accessed date: 2015/10
    [33] STMicroelectronics, STM32F429 User Manual, Ver. 1,accessed date: 2015/10
    [34] C. Creusot and A. Munawar, “Real-Time Barcode Detection in the Wild”, In Applications of Computer Vision (WACV), 2015 IEEE Winter Conference on , pp. 239-245, 2015
    [35] M. Katona and L. G. Nyúl, “A novel method for accurate and efficient barcode detection with morphological operations”, In Signal Image Technology and Internet Based Systems (SITIS), 2012 Eighth International Conference on, pp. 307-314, 2012
    [36] G. Sörös and C. Flörkemeier, “Blur-resistant joint 1D and 2D barcode localization for smartphones”, In Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia. ACM, pp. 11, 2013
    [37] S. Kaur and R. Maini, ”Implementation of Barcode Localization Technique using Morphological Operations”, International Journal of Computer Applications, vol. 97, no. 13, 2014
    [38] P. Bodnár and G. N. László, “Barcode detection with morphological operations and clustering”, In Signal Processing, Pattern Recognition, and Applications, Proceedings of the Ninth IASTED International Conference on, pp. 51-57, 2012
    [39] [Online.] ZBar, “http://zbar.sourceforge.net/”, accessed date: 2015/10

    QR CODE
    :::