| 研究生: |
江菁燁 Chin-Yeh Chiang |
|---|---|
| 論文名稱: |
奈米粒/管二氧化鈦複合高分子電解質之結構探討 Investigate of nano-particle/tube TiO2 composite polymer electrolyte |
| 指導教授: |
諸柏仁
Peter. P. Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 170 |
| 中文關鍵詞: | 奈米二氧化鈦 、高分子電解質 |
| 外文關鍵詞: | TiO2, nano-particle, nano-tube, polymer electrolyte |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在二次電池和其他離子化裝置中,奈米複合材料的高分子電解質是一種有效的處理方式,除了增加離子導電度、機械穩定性之外,與電極 (例如: 鋰金屬)之間能保持一良好的介面接觸。奈米二氧化鈦具有尺寸小且表面積大的優點 (鹼修飾過的奈米管二氧化鈦 > 奈米粒二氧化鈦),能使得離子的傳導增加,同時藉著其具有的強Lewis base特性,不僅促進鹽類解離,同時間接與高分子鏈形成暫時性的物理交聯。
針對本研究所利用的二氧化鈦,使用XRD、TEM、XPS、TGA…鑑定所製備的奈米粒 ( Nano-particle ) 或經過鹼修飾的奈米管( Nano-tube ) 二氧化鈦。在PVDF / LiPF6 / TiO2複合的電解質系統中,藉著XPS光譜分析比較鋰離子與奈米粒/管二氧化鈦作用力的不同,探討其導電行為與導電度的改變。在SEM的表面型態探討上,鋰鹽含量的改變以及添加不同尺寸大小的二氧化鈦,均會影響PVDF結晶粒子的改變。當添加有機溶劑或電解質液時,由於離子轉移空間增加障礙能減少使得導電度皆提高。
經由DSC、FT-IR及AC-impedance研究顯示,奈米管二氧化鈦能有效的藉由交聯結構的產生,使的高分子重組作用降低,非結晶區域增加,提高離子導電度。此外亦探討當鋰離子結合在二氧化鈦表面形成錯合物之後,增加了鹽類的結離外,在奈米管表面的離子會藉著連續的hopping 方式來取代鄰近空的結合位置( Hole )來達到離子轉移。
Nano composite polymer electrolytes are one of the effective approaches to enhance ionic conductivity, mechanical stability and better interfacial contact with electrodes ( i.e., Li metal ) in secondary batteries and other ionic devices. Ion conduction enhancement is higher when filler nano particles in smaller dimensions with high specific surface area. The strong Lewis base characteristics of nano inorganic oxide particles facilitate salt disassociation and physical cross-link with polymer chain improves the mechanical strength.
The formation of TiO2 nano-particle and nano-tube were confirmed with XRD、TEM、XPS、TGA. The XPS results are consistent with structure that the fluorine atoms in PVDF and oxygen atoms in inorganic oxide TiO2 are coordinate with the dissociated Li+ ions through acid-base reactions. As evident from SEM micrograph, contents of lithium salt and TiO2 with different scale will affect polymer crystallinity. When polymer electrolyte is swollen with organic solvent, the overall ion conductivity would be governed by the dissociation of salt, and ion mobility governed by the polymer and the plasticizer dielectric constant and the viscosity.
On a separate studies of PEO, nano-tube TiO2 surface groups provide cross-link centers for the PEO segments and also for the anions, which reduces the polymer reorganization with higher degree of amorphous in composite electrolytes. Nano-tube TiO2 surface groups also facilitated more complete salt dissociation. Conduction path is established on the nano-tube TiO2 where the charge transport achieved by replacing the nearby vacancy ( the “hole” ) hopping in sequential manner.
第一章參考文獻
1.K. Murata, S. Izuchi, Y. Yoshihisa, Electrochim. Acta, 2000, 45, 1501.
2.D. Fauteux, A. Massucco, M. McLin, M.V. Buren, J. Shi, Electrochim. Acta,
1995, 40, 2185.
3.于明昕, 大陸 清華大學化學工程系,化學通報, 2002年第四期.
4.W. A. Gazotti, A. S. Spinace M., Solid State Ionics, 2000, 130, 281.
5.H. R. Allcock, R. Prange, T.J. Hartle, Macromolecules, 2001. 34, 5436.M.
Shibata , T. Kobayash , European Polymer Journal, 2000, 36, 485.
7.Xu W., K. S. Siow, Electrochaimica Acta, 1999, 44, 2287.
8.C. A. Angell , C. Liu , E. Sanzhez , Naure, 1993, 362(11), 137.
9.G. Feullade , P.J. Perche . Appl. Electrochem., 1975, 63, 5.
10.Y. Aihara , M. Kodama , K. Nakahara , J. Power Sources, 1997, 65, 143.
11.Y. X. Song, S.Y. Wu, X. B. Jing, Radiation Phys. Chem., 1997, 49, 541.
12.K. H. Lee, Y. G. Lee, Solid State Ionics, 2000, 133, 257.
13.S. Slane, M. Salomon, J. Power Sources, 1995, 55, 7.
14.X. Q. Yang, H. S. Lee, L. Hanson, J. Power Sources, 1995, 54, 198.
15.H. S. Lee, X. Q. Yang, J. McBreen, J. Electrochem. Soc, 1994, 141(4), 886.
16.M. Taniuchi, T. Inoue, T. Obsawa, EP : 0823744, 1998.
17.M. S. Michael, M. M. E. Jacob, S. R. S. Prabaharan, Solid State Ionics, 1997, 98, 167.
18.G. B. Appetecchi, F. Croce, A. D. Paolis, Electroanalytical Chemistry, 1999, 463, 248.
19.A M. Stephan, R. J. Thirunakaran, J. Power Sources, 1999, 81/82, 752.
20.K. H. Lee, J. K. Park, Electrochaimica Acta, 2000, 45, 1301.
21.T. Michot, A. Nishimoto, M. Watanabe, Electrochaimica Acta, 2000, 45, 1347.
22.F. Boudin, X. Andrieu, C. J. Jehoulet, J. Power Sources, 1999, 81/82, 804.
23.陳金銘, 工研院材料所, 產業報告.
24.洪傳獻, 化學, 1999, 57, 175.
25.宋金穎, 國立清華大學 化學工程學系博士班, “ 微孔性聚偏氟乙烯高分子電解質之電化學特性研究 ”, 民國89年.
26.孫清華編譯, “ 最新可充式電池技術大全 ”, 全華圖書出版.
27.費定國, 袁正宇, 工業材料, 第158期, 89年2月.
第二章參考文獻
1.D. E. Fenton, J. M. Parker, P. V. Wright, Polymer, 1973, 14. 589.
2.M. B. Armand, J. M. Chabagno, M. Duclot, Second International Meeting on
Solid Electrolytes, Extended Abstract, St. Andrew, Scotland, September 1978,
20.
3.M. B. Armand, J. M. Chabagno, M. Duclot, in: P. Vashista, J. N. Mundy, G. K.
Shenoy(Eds), Fast Ion Transport in Solids, Elsevier, Amsterdam, 1979, 131.
4.J.Y. Song, Y.Y. Wang, C.C. Wan, Journal of Power Sources, 1999, 77, 183-197.
5.R. G. Linford, in: B. Scrosati (Ed.), Applications of Electroactive
Polymers, Chapman and Hall, London, 1993, p. 1.
6.J. E. Weston, B.C. Steele, Solid State Ionics, 1982, 7, 75.
7.F. Croce, G. B. Appetecchi, B. Scrosati, Nature, 1998, 394, 456.
8.B. Scrosati, F. Croce, L. Persi, J. Electrochem Soc., 2000.147(5), 1718.
9.A. S. Best, A. Ferry, D. R. Macfarlane et al, Solid State Ionics, 1999, 126,
269.
10. H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata,
S. Yanagida, Journal of Materials Chemistry, 2001, 11, 1694.
11. T. Moritz, J. Reiss, K. Diesner, D. Su, A. Chemseddine, J. Phys. Chem. B,
1997, 101, 8052.
12. 霍登彥, 成功大學化工系碩士班,“ 二氧化鈦薄膜之製備及其特性分析 ”, 民國86
年.
13. A. J. Burggraaf, K. Keizer, B. A. van Hassel, Solid State Ionics, 1989,
32/33, 771.
14. R. R. Bhave, “Inorganic Membranr: Synthesis, Characteristics and
Applications” , Van Nostrand Reinhold, 1991.
15. L. L. Hench, J. K. West, Chemical Review, 1990, 90, 32.
16. 黃雅鈴, 中央大學化學所碩士論文,“ 奈米二氧化鈦-固態複合高分子電解質 ”, 民
國90年.
17. 吳炳佑,中央大學化學工程所碩士論文,“ 含TiO2光催化膜之製備與性質 ”, 民國85
年.
18. S. Iijima, Nature, 1991, 354, 56.
19. M. Adachi, Y. Murata, M. Harada, Chem. Lett. 2000, 8, 942.
20. P. Hoyer, Langmuir, 1996, 12, 141.
21. H. Imai, Y. Takei, K. Shimizu, M. Matsuda, H. Hirashima, J. Mater. Chem.
1999, 9, 2971.
22. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir , 1998, 14, 3160.
23. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Materials, 1999, 11, 1307.
24. D. S. Seo, J. K. Lee, H. Kim, J. Crystal Growth , 2001, 229, 428.
25. Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun, Q. K. Xue, Chemical Physics Letters, 2002, 365, 427.
26. M. Lazzeri, A. Vittadini, A. Selloni, Phys. Rev. B, 2001,155409.
27. P. M. Oliver, G. W. Watson, E. T. Kelsey, S. C. Parker, J. Mater. Chem. 1997, 7, 563.
28. G. Feuillade, J Appl Electrochem, 1975, 5, 63.
29. M. Watanabe, M. Kanba, H. Matsuda, K. Mizoguchi, I. Shinohara, E. Tsuchida, K. Tsunemi, Makromol. Chem.-Rapid. Commun., 1981, 2, 741.
30. E. Tsuchida, H. Ohno, K. Tsunemi, Electrochim. Acta, 1983, 28, 591.
31. K. Tsunemi, H. Ohno, E. Tsuchida, Electrochim. Acta, 1983, 28, 833.
32. H. S. Choe, J. Giaccai, M. Alamgir, K. M. Abraham, Electrochim. Acta, 1995, 40, 2289.
33. P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, T. Sakai, Y. Saito, M. Mizuhata, A. Kajinami, Solid state Ionics, 1999, 126, 285.
34. S. Chintapalli, R. Frech, Solid state Ionics, 1996, 341, 86.
35. C. W. Walker, M. Salomon, J. ElectrochemSoc, 1993, 140(12), 3409.
36. 葉志揚,國立台灣大學化學工程研究所,“ 以溶膠凝膠法制備二氧化鈦觸媒及其性質 ”,民國88年.
37. K. K. Bando, K. Sayama, H. kusama, K. Okabe, H. Arakawa, Applied Catalysis A: General, 1997, 165, 391.
38. P. Hoyer, Langmuir, 1996, 12, 1411.
39. S. Y. Huang, L. Kavan, I. Exnar, M. Gra¨tzel, J. Electrochem. Soc. 1995, 142, L142.
40. W. Marnix, J. K. Gordon, Ad A. van Well, M. Hannu, M. M. Fokko, J. AM. CHEM. SOC. 2003, 125, 840.
第三章參考文獻
1.鄭信民, 林麗娟, “ X繞射應用簡介 ”, 工業材料雜誌 91年1月, 181期, 100-108.
2.王奕凱, 邱宗明, 李秉傑和合譯, “ 非均勻系催化原理及應用 ”, 國立編譯館, 渤海堂文化公司.
3.李斗星, 葉恆強, 科儀新知第二十卷第六期, 88年6月.
4.郎長齡, 國立中央大學化學所 碩士班, “ 高分子摻合系統型態學之核自旋弛緩時間分佈研究 ”, 民國86年.
5.蔡麗娟,國立中央大學化學所 碩士班,“ 交聯型固態高分子電解質 ”,民國90年.
6.葉秀雲,國立中央大學化學所 碩士班,“ 高分子固態電解質改進高分子發光二極體之光學特性研究 ”, 民國91年.
7.高憲明, “ 固態核磁共振技術於材料化學之應用與研究 ”, 化工技術, 2002年2、3月, 第十一卷第二、三期.
8.賴英煌, 邱雯藝, 洪偉修, “ 同步輻射X-ray光電子能階在表面化學之研究 ”, 化學, 2002, 60卷, 第三期,381-390.
9.宋金穎, 國立清華大學 化學工程學系博士班, “ 微孔性聚偏氟乙烯高分子電解質之電化學特性研究 ” , 民國89年.
10.葉偉斌, 元智大學化學工程所, “ 高分子電解質奈米複合材料之合成與物性研究 ”, 民國91年.
第四章參考文獻
1.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir , 1998, 14, 3160.
2.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Materials, 1999, 11, 1307.
3.Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun, Q. K. Xue, Chemical Physics Letters, 2002, 365, 427.
4.J. P. Southall, H. Hubbard, S. F. Johnston, V. Rogers, G. R. Davies, J. E. Mcintyre, Solid state ionics, 1996, 85, 51.
5.Y. Liu, J. Y. Lee, P. Wang, K. L. Tan, Reactive & Functional Polymers, 2001, 47, 201.
6.K. M. Kim, N. Park, K. S. Ryu, S. H. Chang, Polymer, 2002, 43, 3951.
7.H. Kataoka, Y. Saito, T. Sakai, J. Phys. Chem. B., 2000, 104, 11460.
8.R. Percolla, P. Musumeci, L. Calcagno, G. Foti, G. Ciavola, Nuclear Instruments and Methods in Physics Research B, 1995, 105, 181.
9.蕭鴻裕,淡江大學 化學工程系 碩士班, “ PVDF薄膜之製備及在滲透蒸發程序之應用 ”,民國88年6月.
10.A. S. Best, J. Adebahr, P. Jacobsson, D. R. MacFarlane, M. Forsyth, Macromolecules, 2001, 34, 4549.
11.Y. Zhao, M. W. Urban, Langmuir 1999, 15, 3538.
12.S. Rjendran, O. Mahendran, T. Mahalingam, European Polymer Journal, 2002, 38, 49.
13.K. J. Kuhn, B. Hahn, V. Percec, M. W. Urban, Applied spectroscopy, 1987, 41, 843.
14.P. Wang, K. L. Tan, E. T. Kang, K. G. Neoh, Journal of Membrane Science, 2002, 195, 103.
15.J. F. Hester, P. Banerjee, Y. Y. Won, A. Akthakul, M. H. Acar, A. M. Mayes, Macromolecules, 2002, 35, 7652.
16.M. Forsyth, D. R. MacFarlane, A. Best, J. Adebahr, P. Jacobsson, A. J. Hill, Solid State Ionics, 2002, 147, 203.
17.P. P. Chu, Hsiu-Ping Jen, Fang-Rey Lo, C. L. Lang, Macromolecules, 1999, 32, 4738.
18.任修平, 國立中央大學化學所 碩士班, “ 超高離子導體: Novolac Type 酚醛樹脂與聚氧化乙烯混之高分子電解質 ”, 民國88年.
19.S. D. Droger, A. Nitzam, M. A. Rather, J. Chem. Phys., 1983, 79, 3133.
20.S. D. Droger, A. Nitzam, M. A. Rather, Phy. Rev. B, 1985, 31, 3939.
21.W. Wieczorek, P. Lipka, G. Zukoeska, H. Wycislik, J. Phys. Chem. B., 1998, 102, 6968.
22.A. Stashans, S. Lunll, R. Bergstrom, A. Hsgfeldt, S-E Linquist, Phy. Rev. B, 1996, 53, 159.
23.M. Wagemaker, R. V. D. Krol, A. P. M. Kentgens, A. A. V. Well, F. M. Mulder, J. Am. Chem. Soc., 2001, 123, 11454.
24.A. Bernson, J. Lindgren, W. Huang, R. Frech, Polymer, 1995, 36, 4471.
25.W. Wieczorek, Z. Florjanczyk, J. R. Stevens, Electrochimica Acta., 1995, 13-14, 2251.
26.F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati, Nature, 1998, 394, 456.
27.P. Lightfoot, M. A. Mehta, P. G. Bruce, Science, 1993, 262, 883.
28.J. E. Weston, B. C. H. Steele, Solid State Ionics, 1982, 7, 81.
29.S. Bhattacharja, S. W. Smoot, D. H. Whttmore, Solid State Ionics, 1986, 18-19, 306.
30.Y. W. Kim, W. Lee, B. K. Choi, Electrochimica acta, 2000, 45, 1473.
31.W. Wieczorek, Z. Florjancyk, J. R. Stevens, Electrochim,. Acta, 1995, 40, 2251.
32.J. Przyluski, M. Siekierski,W. Wieczorek, Electrochim,. Acta, 1995, 40, 2101.
33.F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B. Scrosati, J. Phys. Chem. B, 1999, 103, 10632.
34.S. H. Chung, Y. Wan, L. Persi, F. Croce,, S. G. Greenbaum, B. Scrosati, E. Plichta, Journal. of Power Sources, 2001, 644.
35.W. Wieczorek, P. Lipka, G. Zukowska, H. Wycislik, J. Phys. Chem. B, 1998, 102, 6968.
36.M. Wagemaker, R. V. D. Krol, A. P. M. Kentgens, A.A.V. Well, F. .M. Mulder, J. Am. Chem. Soc., 2001, 123, 11454.
37.M. Wagemaker, G. J. Kearley, A.A.V. Well, H. Mutka, F. .M. Mulder, J. Am. Chem. Soc., 2003, 125, 840.
38.W. Wieczorek, J. R. Stevens, Z. Florjanczyk, Solid state Ionics 1996, 85, 76.
39.F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M. A. Hendrickson, Electrochimica Acta, 2001, 46, 2457.
40.S. H. Chung, Y. Wang, L.Persi, F. Croce, S. G. Greenbaum, B. Scrosati, E. Plichta, J. Power Sources, 2001, 97-98, 644.
41.M. Wagemaker, R. V. D. Krol, A. P. M. Kentgens, A.A.V. Well, F. .M. Mulder, J. Am. Chem. Soc., 2001, 123, 11454.
42.M. Wagemaker, G. J. Kearley, A.A.V. Well, H. Mutka, F. .M. Mulder, J. Am. Chem. Soc., 2003, 125, 840.
43.A. S. Best, J. Adebahr, P. Jacobsson, D. R. MacFarlane, M. Forsyth, Macromolecules, 2001, 34, 4549.