跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林協昌
Hsieh-Chang Lin
論文名稱: 以靜電紡絲技術製備一維鍺化鎂材料 之熱電性質研究
Study on Thermoelectric Properties in One-dimensional Mg Germanide Materials Fabricated Using Electrospinning Method
指導教授: 李勝偉
Sheng-Wei Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 55
中文關鍵詞: 鍺化鎂一維奈米結構熱電效應
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鍺化鎂 (Mg germanide) 是應用在中溫區間的熱電材料,由於具有窄能隙特徵、高成本效益、對環境較無害、組成元素蘊藏量豐富,被認為是具有潛力的熱電材料。本實驗利用靜電紡絲法 (Electrospinning method) 搭配高真空熱阻式蒸鍍系統 (Thermal Coater System) 分別鍍上鎂、鍺薄膜,藉由調變鎂和鍺沉積的薄膜比例,製備出鍺化鎂的一維奈米結構,並探討不同比例在300~600 K區間的熱電性質 (Thermoelectric properties)。
    由靜電紡絲法製備的PVP奈米纖維在熱蒸鍍過程作用為模板,可經過熱退火移除並留下溝渠形貌的鍺化鎂薄膜。當材料電導率上升,熱導率也會上升,因此無法藉由單純的提升電導率來增加ZT值,製備成一維的奈米結構後,利用材料的表面散射 (surface boundary scattering) 和晶界散射 (grain boundary scattering) 的機制已經是一個有效降低熱導率的方法,由不同元素組成的鎂鍺化合物,合金散射 (alloy scattering) 對於阻礙高頻聲子更扮演了重要的角色,控制厚度比例製備出三種不同的奈米溝渠分別是鍺化鎂 (Mg2Ge)、鍺化鎂+鍺複合相 (Mg2Ge+Ge) 以及鍺化鎂+鎂複合相 (Mg2Ge +Mg),而鍺化鎂+鍺複合相 (Mg2Ge+Ge) 奈米溝渠其ZT值在600 K時達到0.45。


    Thermoelectric (TE) material Mg germanide, which is applicable in mid-temperature and has the advantages of narrow bandgap, cost-efficiency, environment friendly properties and the abundant constituent element, is regarded as a potentially promising thermoelectric material. In this study, we utilized electrospinning method and thermal coater system to fabricated one-dimensional Mg germanide nanostructures of different deposition ratio of germanium and magnesium. Their thermoelectric of properties different deposition ratio have been investigated in the temperature range of 300~600 K.
    PVP nanofibers are synthesized by electrospinning method and used as the template in evaporation process. After being annealed, PVP nanofibers would be removed and Mg germanide nanotroughs remain. It is difficult to increase the ZT value by enhancing the conductivity due to concurrently increased thermal conductivity. Therefore, we fabricate one-dimensional nanostructures to reduce their thermal conductivity by surface scattering and grain boundary scattering. For Mg germanides consisting of different elements, alloy scattering plays an important role to hinder high-frequency phonons, and thus enhance of the ZT value. Three kind of nanotroughs can be fabricated by controlling its thickness ratio. There are Mg2Ge, Mg2Ge+Ge, and Mg2Ge+Mg, respectively. The ZT value in Mg2Ge+Ge nanotrough reaches 0.45 at 600 K.

    摘要 ........................................................................................................ i Abstract ................................................................................................ ii 致謝 ...................................................................................................... iii 目錄 ....................................................................................................... v 圖目錄 ................................................................................................ viii 第一章 文獻回顧 ................................................................................. 1 1.1 鍺化鎂材料特性 ...................................................................................... 1 1.2 鍺化鎂奈米結構合成方法 ..................................................................... 2 1.2.1 掠角沉積法搭配熱蒸鍍法 ............................................................ 2 1.2.2 磁控濺鍍法 .................................................................................... 3 1.2.3 固相燒結法 .................................................................................... 4 1.2.4 機械合金化 .................................................................................... 5 1.2.5 火光電漿燒結法 ............................................................................ 5 1.2.6 脈衝雷射沉積法 ............................................................................ 6 1.3 鍺化鎂奈米結構合成機制 ..................................................................... 7 1.3.1物理氣相沉積機制 ......................................................................... 7 1.3.2 機械合金化機制 .......................................................................... 10 1.4 靜電紡絲技術 ........................................................................................ 10 第二章 實驗步驟 ............................................................................... 14 2.1 實驗流程 ................................................................................................ 14 2.2 實驗藥品 ................................................................................................ 15 2.3 實驗儀器 ................................................................................................ 16 2.3.1 靜電紡絲實驗機 .......................................................................... 16 2.3.2 高真空熱阻式蒸鍍系統 .............................................................. 17 2.3.3 電漿輔助化學沉積系統 .............................................................. 17 2.3.4 中電流源離子佈植機 .................................................................. 18 2.3.5 管型爐 .......................................................................................... 18 2.3.6 顯微拉曼光譜儀 .......................................................................... 18 2.3.7 掃描式電子顯微鏡 ...................................................................... 19 2.3.8 穿透式電子顯微鏡 ...................................................................... 19 2.3.9 三維微型操作手 .......................................................................... 20 2.3.10 雙束型場發射聚焦離子束系統 ................................................ 21 2.3.11 熱電性質量測系統 .................................................................... 22 第三章 鍺化鎂奈米結構之熱電性質探討 ...................................... 23 3.1 研究動機 ................................................................................................ 23 3.2 實驗步驟 ................................................................................................ 25 3.2.1 製備鍺化鎂奈米溝渠 .................................................................. 25 3.2.2 製備熱電性質量測試片 .............................................................. 27 3.2.3 熱電性質量測 .............................................................................. 29 3.3 結果與討論 ............................................................................................ 31 3.3.1結構與形貌分析 ........................................................................... 31 3.3.2熱電性質分析 ............................................................................... 40 第四章 結論 ....................................................................................... 47 第五章 未來展望 ............................................................................... 48 參考文獻 ............................................................................................. 49

    [1] R. Viennois, P. Jund, C. Colinet, and J.-C. Tédenac, "Defect and phase stability of solid solutions of Mg 2 X with an antifluorite structure: An ab initio study," Journal of Solid State Chemistry, 193, 133-136 (2012).
    [2] D. M. Rowe, "Thermoelectrics Handbook: Macro to Nano," Taylor & Francis, (2005).
    [3] P. Jund, R. Viennois, C. Colinet, G. Hug, M. Fèvre, and J.-C. Tédenac, "Lattice stability and formation energies of intrinsic defects in Mg2Si and Mg2Ge via first principles simulations," Journal of Physics: Condensed Matter, 25, 035403 (2013).
    [4] L. E. Bell, "Cooling, heating, generating power, and recovering waste heat with thermoelectric systems," Science, 321, 1457-1461 (2008).
    [5] V. Zaitsev, M. Fedorov, E. Gurieva, I. Eremin, P. Konstantinov, A. Y. Samunin, et al., "Highly effective Mg 2 Si 1− x Sn x thermoelectrics," Physical Review B, 74, 045207 (2006).
    [6] M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, et al., "The thermoelectric properties of bulk crystalline n-and p-type Mg2Si prepared by the vertical Bridgman method," Journal of Applied Physics, 104, 013703 (2008).
    [7] G. Nolas, D. Wang, and M. Beekman, "Transport properties of polycrystalline Mg 2 Si 1− y Sb y (0≤ y< 0.4)," Physical Review B, 76, 235204 (2007).
    [8] C. B. Vining, "Thermoelectric properties of silicides," CRC handbook of Thermoelectrics, 277-285 (1995).
    [9] Q. Zhang, X. Zhao, H. Yin, and T. Zhu, "Thermoelectric performance of Mg 2− x Ca x Si compounds," Journal of Alloys and Compounds, 464, 9-12 (2008).
    [10] J.-i. Tani, M. Takahashi, and H. Kido, "First-principles calculation of impurity doping into Mg 2 Ge," Journal of Alloys and Compounds, 485, 764-768 (2009).
    [11] Z. Li, Q. Sun, X. D. Yao, Z. H. Zhu, and G. Q. M. Lu, "Semiconductor nanowires for thermoelectrics," Journal of Materials Chemistry, 22, 22821-22831 (2012).
    [12] G. Zhu, H. Lee, Y. Lan, X. Wang, G. Joshi, D. Wang, et al., "Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium," Physical review letters, 102, 196803 (2009).
    [13] Y. Mizuyoshi, R. Yamada, T. Ohishi, Y. Saito, T. Koyama, Y. Hayakawa, et al., "Growth of Mg 2 Si 1− x Ge x layers on silicon–germanium substrates," Thin solid films, 508, 70-73 (2006).
    [14] L. Chuang, N. Savvides, and S. Li, "Magnetron deposition of in situ thermoelectric Mg2Ge thin films," Journal of electronic materials, 38, 1008-1012 (2009).
    [15] N. Savvides, "Ion-assisted deposition and metastable structures," Thin Solid Films, 163, 13-32 (1988).
    [16] H. Gao, T. Zhu, X. Zhao, and Y. Deng, "Influence of Sb doping on thermoelectric properties of Mg 2 Ge materials," Intermetallics, 56, 33-36 (2015).
    [17] T. Aizawa, R. Song, and A. Yamamoto, "Solid-state synthesis of thermoelectric materials in Mg-Si-Ge system," Materials transactions, 46, 1490-1496 (2005).
    [18] H. Bhadeshia, "Recrystallisation of practical mechanically alloyed iron-base and nickel-base superalloys," Materials Science and Engineering: A, 223, 64-77 (1997).
    [19] M. Akasaka, T. Iida, K. Nishio, and Y. Takanashi, "Composition dependent thermoelectric properties of sintered Mg 2 Si 1− x Ge x (x= 0 to 1) initiated from a melt-grown polycrystalline source," Thin Solid Films, 515, 8237-8241 (2007).
    [20] L. Chuang, D. Wang, T. Tan, M. Assadi, and S. Li, "Processing dependence of structural and physical properties of Mg 2 Ge thin films prepared by pulsed laser deposition," Thin Solid Films, 520, 6226-6229 (2012).
    [21] C. Julien, E. Haro-Poniatowski, M. Camacho-Lopez, L. Escobar-Alarcon, and J. Jimenez-Jarquin, "Growth of LiMn 2 O 4 thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries," Materials Science and Engineering: B, 72, 36-46 (2000).
    [22] T. Aizawa and C. Zhou, "Bulk Mechanical Alloying for Solid‐State Synthesis of Functional Materials," Advanced Engineering Materials, 2, 29-32 (2000).
    [23] N. Bhardwaj and S. C. Kundu, "Electrospinning: a fascinating fiber fabrication technique," Biotechnology advances, 28, 325-347 (2010).
    [24] S. Y. Chew, J. Wen, E. K. Yim, and K. W. Leong, "Sustained release of proteins from electrospun biodegradable fibers," Biomacromolecules, 6, 2017-2024 (2005).
    [25] D. Li, Y. Wang, and Y. Xia, "Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays," Nano letters, 3, 1167-1171 (2003).
    [26] D. Li, Y. Wang, and Y. Xia, "Electrospinning nanofibers as uniaxially aligned arrays and layer‐by‐layer stacked films," Advanced Materials, 16, 361-366 (2004).
    [27] D. Yang, B. Lu, Y. Zhao, and X. Jiang, "Fabrication of aligned fibrous arrays by magnetic electrospinning," Advanced Materials, 19, 3702 (2007).
    [28] T. J. Seebeck, "Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz," Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265-373 (1822-1823).
    [29] J. Flipse, F. Bakker, A. Slachter, F. Dejene, and B. van Wees, "Cooling and heating with electron spins: Observation of the spin Peltier effect," arXiv preprint arXiv:1109.6898, (2011).
    [30] J. Chen, Z. Yan, and L. Wu, "The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator," Journal of applied physics, 79, 8823-8828 (1996).
    [31] J. Kim, J. H. Bahk, J. Hwang, H. Kim, H. Park, and W. Kim, "Thermoelectricity in semiconductor nanowires," physica status solidi (RRL)-Rapid Research Letters, 7, 767-780 (2013).
    [32] R. Chen, "Nanowires for Thermal Energy Conversion and Management," ProQuest, (2008).
    [33] L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, et al., "Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device," Journal of heat transfer, 125, 881-888 (2003).
    [34] P. Kim, L. Shi, A. Majumdar, and P. McEuen, "Thermal transport measurements of individual multiwalled nanotubes," Physical review letters, 87, 215502 (2001).
    [35] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard Iii, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature, 451, 168-171 (2008).
    [36] M. C. Wingert, Z. C. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, et al., "Thermal conductivity of Ge and Ge–Si core–shell nanowires in the phonon confinement regime," Nano letters, 11, 5507-5513 (2011).
    [37] Y. Raptis, G. Kourouklis, E. Anastassakis, E. Haro-Poniatowski, and M. Balkanski, "Anharmonic effects in Mg2X (X= Si, Ge, Sn) compounds studied by Raman spectroscopy," Journal de Physique, 48, 239-245 (1987).
    [38] K. Krishnamoorthy, J. Y. Moon, H. B. Hyun, S. K. Cho, and S.-J. Kim, "Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells," Journal of Materials Chemistry, 22, 24610-24617 (2012).
    [39] G. Kumar, G. Prasad, and R. Pohl, "Experimental determinations of the Lorenz number," Journal of materials science, 28, 4261-4272 (1993).
    [40] C. Kittel, "Introduction to solid state physics," Wiley, (2005).
    [41] R. Albers, L. Bohlin, M. Roy, and J. Wilkins, "Normal and umklapp phonon decay rates due to phonon-phonon and electron-phonon scattering in potassium at low temperatures," Physical Review B, 13, 768 (1976).
    [42] R. Venkatasubramanian, "Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures," Physical Review B, 61, 3091 (2000).
    [43] M. Holland, "Analysis of lattice thermal conductivity," Physical Review, 132, 2461 (1963).
    [44] J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J. R. Heath, "Reduction of thermal conductivity in phononic nanomesh structures," Nature nanotechnology, 5, 718-721 (2010).
    [45] S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen, M. S. Dresselhaus, et al., "Nanostructured bulk silicon as an effective thermoelectric material," Advanced Functional Materials, 19, 2445-2452 (2009).
    [46] M. Tripathi and C. Bhandari, "Material parameters for thermoelectric performance," Pramana, 65, 469-479 (2005).
    [47] T. Ikeda, L. Haviez, Y. Li, and G. J. Snyder, "Nanostructuring of Thermoelectric Mg2Si via a Nonequilibrium Intermediate State," small, 8, 2350-2355 (2012).
    [48] H. Nakajima, "The discovery and acceptance of the Kirkendall effect: The result of a short research career," JOM, 49, 15-19 (1997).
    [49] D. K. Brice and K. B. Winterbon, "Ion implantation range and energy deposition distributions: Low incident ion energies," vol. 2: Plenum Press, (1975).
    [50] M. Yoshinaga, T. Iida, M. Noda, T. Endo, and Y. Takanashi, "Bulk crystal growth of Mg 2 Si by the vertical Bridgman method," Thin Solid Films, 461, 86-89 (2004).
    [51] A. Shakouri, "Recent developments in semiconductor thermoelectric physics and materials," Materials Research, 41, 399 (2011).
    [52] G. Zhang, H. Fang, H. Yang, L. A. Jauregui, Y. P. Chen, and Y. Wu, "Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications," Nano letters, 12, 3627-3633 (2012).
    [53] D. Vashaee and A. Shakouri, "Improved thermoelectric power factor in metal-based superlattices," physical review letters, 92, 106103-106103 (2004).
    [54] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, et al., "Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys," Nano letters, 8, 4670-4674 (2008).

    QR CODE
    :::