| 研究生: |
林春羽 Chun-Ye Lin |
|---|---|
| 論文名稱: |
正交分頻多重接取通訊系統之資源配置演算法設計 Resource Allocation Algorithm Designs for OFDM-based communication Systems |
| 指導教授: |
林銀議
Yin-Yi Lin 陳永芳 Yung-Fang Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 多使用者檢測器 、多重存取干擾 、分頻多重接取 、正交分頻多工 、多輸入多輸出 、資源配置 |
| 外文關鍵詞: | Orthogonal Frequency Division Multiplexing, Resource Allocation, Multiple Input Multiple Output, Multi-user Detector, Orthogonal Frequency Division Multiple Access, multi-access interference |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,為了解決以正交分頻多工為基礎所建立的通信系統,在各種不同的條件與環境背景下,為了達成系統在某些特定限制條件下所要求的最佳目標函數值,我們提出了一些對應的調適性資源配置演算法。首先,針對多使用者正交分頻多工系統在下鏈方向,我們利用Lagrange 乘數法並提出一種技術以充分利用在做位元與功率配置過程中所產生的相關計算數據,以降低計算複雜度,但卻保有相同的系統性能。 另外,在具有同頻干擾通道的多細胞下鏈正交分頻多工系統或是離散複頻調變為基礎的數位用戶迴路數據機方面,我們開發一種交錯反覆的位元與功率配置法,使得所有的基地台皆具有最小的傳輸功率且細胞內的每個使用者皆能滿足所要求的服務品質。與修正的貪婪多使用者位元配置法相比較,我們的方法有較低的計算複雜度,而且我們提出的技術在極大部份的資料位元傳輸率中具有較佳的功率增益。
我們也提出一種針對多輸入多輸出正交分頻多工為基礎的多使用者通訊系統在下鏈方向的載波,位元與功率配置演算法。我們使用一種含有2維編碼器-波束形成器的傳輸器以動態多使用者的多輸入多輸出正交分頻多工傳輸技術完成此配置,我們在相同的條件下公平的比較本方法與數種技術。最後,我們就多重存取多輸入多輸出正交分頻多工系統在上鏈方向提出一種配置演算法,以便利用在頻率與空間領域改進功率與頻譜效率。我們的方法,在接收端不需要配備多使用者檢測器而且不會使用任意一對空間可分離的使用者的所有載波具有相同的空間交互相關性之假設,也因此我們所提的技術克服了多重存取多輸入多輸出正交分頻多工系統的這些問題。
In order to solve the objectives with some constraints in various scenarios for orthogonal frequency division multiplexing (OFDM) based systems, we proposed a couple of adaptive resource allocation algorithms. In downlink multi-user OFDM systems, we utilize the Lagrange multiplier method to propose an approach which uses the related calculation results in the procedure for the power and bit assignment. When the model of the co-channel interference channel in downlink multi-cell OFDM systems or in discrete multi-tone (DMT)-based wired digital subscriber loop (DSL) modems is considered, we developed an iterative interlaced bit and power allocation to minimize the total transmit power of all base stations (BSs) while satisfying the required quality of service (QoS) of each user in the cell. The proposed scheme offers the better power gain for higher required data rates than the existing algorithm while having a less computational complexity.
We also propose a sub-carrier, bit, and power allocation algorithm for multiple input multiple output (MIMO) OFDM-based multi-user communication systems on downlink. We exploit a dynamic multi-user MIMO OFDM transmit scheme with two-dimensional (2-D) coder beam-formers in the transmitter to achieve our purpose. We fairly compare the proposed method with several algorithms, such as frequency division multiple access (FDMA), constructive initial assignment (CIA) and Wong’s subcarrier allocation (WSA), under the same conditions. Finally, a resource allocation scheme for multi-access MIMO-OFDM systems in uplink is developed to improve power and spectrum efficiency in the frequency and the space domains. We develop the scheme to remedy some problems for multi-access MIMO-OFDM systems without using multi-user detector (MUD) techniques and the assumption of the identical spatial cross-correlation across all sub-carriers for any pair of spatially separable users.
[1] W. Rhee and J. M. Cioffi, “Increase in capacity of multiuser OFDM system using dynamic subchannel allocation,” in Proc. IEEE VTC-Spring, 2000, vol. 2, pp. 1085–1089.
[2] H. Yin and H. Liu, “An efficient multiuser loading algorithm for OFDM-based broadband wireless systems,” in Proc. IEEE GLOBECOM, 2000, vol. 1, pp. 103–107.
[3] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 171–178, Feb. 2003.
[4] C. Mohanram and S. Bhashyam, “A sub-optimal joint subcarrier and power allocation algorithm for multiuser OFDM,” IEEE Commun. Lett., vol. 9, no. 8, pp. 685–687, Aug. 2005.
[5] L. Wang and Z. Niu, “Computationally efficient resource allocation algorithm for multiuser OFDM systems,” in Proc. IEEE APCC, Oct. 2005, pp. 416–420.
[6] Z. Han, Z. Ji, and K. J. R. Liu, “Low-complexity OFDMA channel allocation with Nash bargaining solution fairness,” in Proc. IEEE GLOBECOM, Nov. 2004, vol. 6, pp. 3726–3731.
[7] C. Y. Wong, C. Y. Tsui, R. S. Cheng, and K. B. Letaief, “A real-time subcarrier allocation scheme for multiple access downlink OFDM transmission,” in Proc. IEEE VTC, 1999, vol. 2, pp. 1124–1128.
[8] C. Y. Wong, R. S. Cheng, K. B. Lataief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Commun., vol. 17, no. 10, pp. 1747–1758, Oct. 1999.
[9] S. Pietrzyk, and G. J. M. Janssen, “Multiuser subcarrier allocation for QoS provision in the OFDMA systems,” in Proc. IEEE VTC-Fall, 2002, vol. 2, pp. 1077–1081.
[10] I. Kim, H. Lee, B. Kim, and Y. H. Lee, “On the use of linear programming for dynamic subchannel and bit allocation in multiuser OFDM,” in Proc. IEEE GLOBECOM, Nov. 2001, vol. 6, pp. 3648–3652.
[11] D. Kivanc, G. Li, and H. Liu, “Computationally efficient bandwidth allocation and power control for OFDMA,” IEEE Trans. Commun., vol. 2, no. 6, pp. 1150–1158, Nov. 2003.
[12] Y. J. Zhang and K. B. Letaief, “Multiuser adaptive subcarrier and bit allocation with adaptive cell selection for OFDM systems,” IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 1566–1575, Sep. 2004.
[13] D. Hughes-Hartogs, “Ensemble Modem Structure for Imperfect Transmission Media,” U.S. Patents 4679227 (Jul. 7, 1987); 4731816 (Mar. 15, 1988); 4833706 (May 23, 1989).
[14] N. Chayat, “Updated submission template for TGa – revision 2,” Doc. IEEE 802.11 -98/156r2, Apr. 1998.
[15] A. Doufexi, S. Armour, M. Butler, A. Nix, and D. Bull, “A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards,” IEEE Commun. Mag., pp. 172–179, May 2002.
[16] J. G. Proakis, Digital Communications. New York: McGraw-Hill, 2001.
[17] W. Yu, G. Ginis, J. M. Cioffi, “An adaptive multi-user power control algorithm for VDSL,” in Proc. IEEE GLOBECOM, 2001, vol. 1, pp. 394–398.
[18] R. V. Sonalkar, D. Applegate, “Shannon capacity of frequency-overlapped digital subscriber loop channels,” in Proc. IEEE ICC, Apr. 2002, vol. 3, pp. 1741–1745.
[19] J. Lee, R. V. Sonalkar, J. M. Cioffi, “Multiuser bit loading for multicarrier systems,” IEEE Trans. Commun., vol. 54, no. 7, pp. 1170–1174, Jul. 2006.
[20] J. Lee, R. V. Sonalkar, J. M. Cioffi, “A multi-user rate and power control algorithm for VDSL,” in Proc. IEEE GLOBECOM, Nov. 2002, vol. 2, pp. 1264–1268.
[21] L. Y. Ou, Y. F. Chen, “An iterative multi-user bit and power allocation algorithm for DMT-based systems,” IEICE Trans. Commun., vol. E88-B, no. 11, pp. 4259–4265, Nov. 2005.
[22] M. Olfat, F. R. Farrokhi, and K. J. R. Liu, “Power allocation for OFDM using adaptive beamforming over wireless networks,” IEEE. Trans. Commun., vol. 53, no. 3, pp. 505–514, Mar. 2005.
[23] Z. Han, Z. Ji, and K. J. R. Liu, “Power minimization for multi-cell OFDM networks using distributed non-cooperative game approach,” in Proc. IEEE GLOBECOM, Nov. 2004, vol. 4, pp. 3742–3747.
[24] S. Pietrzyk and G. J. M. Janssen, “Radio resource allocation for cellular networks based on OFDMA with QoS guarantees,” in Proc. IEEE GLOBECOM, Nov. 2004, vol. 4, pp. 2694–2699.
[25] Y. Li and G. Su, “Effects of channel estimation in adaptive loading gain of OFDM,” in Proc. IEEE ICCEA, 2004, pp. 296–299.
[26] A. M. Wyglinski, F. Labeau, and P. Kabal, “Effects of imperfect subcarrier SNR information on adaptive bit loading algorithms for multicarrier systems,” in Proc. IEEE GLOBECOM, Nov. 2004, vol. 6, pp.3835–3839.
[27] A. Seyedi, and G. J. Saulnier, “Robust bit-loaded wireless OFDM,” in Proc. IEEE VTC, Sep. 2004, vol. 1, pp. 593–597.
[28] X. Dong and Z. Ding, “Channel estimation and bit-loading in wireless multicarrier systems based on decimated signal feedback,” in Proc. IEEE ICC, Jun. 2006, vol. 10, pp. 4589–4594.
[29] Z. Han, F. R. Farrokhi, Z. Ji, and K. J. R. Liu, “Capacity optimization using subspace method over multicell OFDMA networks,” in Proc. IEEE WCNC, Mar. 2004, vol. 4, pp. 2393–2398..
[30] C. Valenti, “NEXT and FEXT models for twisted-pair north American loop plant,” IEEE J. Sel. Areas Commun., vol. 20, no. 5, pp. 893–900, Jun. 2002.
[31] S. U. Pillai, T. Suel, and S. Cha, “The Perron-Frobenius theorem: some of its applications,” IEEE Signal Process. Mag., vol. 22, no. 2, pp. 62–75, Mar 2005.
[32] L. Dong, G. Xu, and H. Ling, “Prediction of fast fading mobile radio channels in wideband communication systems,” in Proc. IEEE GLOBECOM, Nov. 2001, vol. 6, pp. 3287–3291.
[33] J. K. Hwang and J. H. Winters, “Sinusoidal modeling and prediction of fast fading processes,” in Proc. IEEE GLOBECOM, Nov. 1998, vol. 2, pp. 892–897.
[34] A. Duel-Hallen, S. Hu and H. Hallen, “Long-range prediction of fading signals,” IEEE Signal Process. Mag., vol. 17, no. 3, pp. 62–75, May 2000.
[35] T. Keller and L. Hanzo, “Adaptive modulation techniques for duplex OFDM transmission,” IEEE Trans. Veh. Technol., vol. 49, no. 5, pp. 1893–1906, Sep. 2000.
[36] S. Falahati, A. Svensson, T. Ekman, and M. Sternad, “Adaptive modulation systems for predicted wireless channels,” IEEE Trans. Commun., vol. 52, no. 2, pp. 307–316, Feb. 2004.
[37] T. S. Rappaport, Wireless Communications Principles and Practice. Upper Saddle River, NJ: Prentice Hall, 2002.
[38] P. Xia, S. Zhou, and G. B. Giannakis, “Adaptive MIMO-OFDM based on partial channel state information,” IEEE Trans. Signal Process., vol. 52, no. 1, pp. 202–213, Jan. 2004.
[39] Z. Hu, G. Zhu, Y. Xia, and G. Liu, “Multiuser subcarrier and bit allocation for MIMO-OFDM systems with perfect and partial channel information,” in Proc. IEEE WCNC, Mar. 2004, vol. 2, pp. 1188–1193.
[40] J. Xu and J. S. Seo, “Adaptive subcarrier and power allocation with fairness for multiuser space time block coded OFDM system,” Wireless Pers. Commun., pp. 1–15, Mar. 2009.
[41] B. Danobeitia, G. Femenias, and F. R._Palou, “Resource allocation in MIMO-OFDMA wireless systems based on linearly precoded orthogonal space-time block codes,” in Proc. EUNICE, Sep. 2009, LNCS 5733, pp. 118–127.
[42] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[43] Y. F. Chen and J. W. Chen, “A fast suboptimal subcarrier, bit, and power allocation algorithm for multiuser OFDM-based systems,” IEEE Trans. Veh. Technol., vol. 57, no. 2, pp. 873–881, Mar. 2008.
[44] S. K. Lai, R. S. Cheng, K. B. Letaief, and C. Y. Tsui, “Adaptive tracking of optimal bit and power allocation for OFDM systems in time-varying channels,” in Proc. IEEE WCNC, 1999, vol. 2, pp. 776–780.
[45] S. Song, C. Hou, and D. Cao, “Bit allocation algorithm for multi-user adaptive OFDM system with adaptive trellis coded MQAM,” in Proc. IEEE CCECE, 2002, vol. 3, pp. 1300–1304.
[46] Y. J. Zhang and K. B. Letaief, “An efficient resource-allocation scheme for spatial multiuser access in MIMO/OFDM systems,” IEEE Trans. Commun., vol. 53, no. 1, pp. 107–116, Jan. 2005.
[47] L. Litwin, “An introduction to multicarrier modulation,” IEEE Potentials Mag., vol. 19, no. 2, pp. 36–38, Apr. 2000.
[48] J. Kim and J. M. Cioffi, “Spatial multi-user access with antenna diversity using singular value decomposition,” in Proc. IEEE ICC, 2000, vol. 3, pp. 1253–1257.
[49] C. F. Tsai, C. J. Chang, F. C. Ren, and C. M. Yen, “Adaptive radio resource allocation for downlink OFDMA /SDMA systems with multimedia traffic,” IEEE Trans. Wireless Commun., vol. 7, no. 5, pp. 1734–1743, May 2008.
[50] A. Goldsmith and S. Chua, “Variable-rate variable-power MQAM for fading channels,” IEEE Trans. Commun., vol. 45, no.10, pp. 1218–1230, Oct. 1997.
[51] T. Keller and L. Hanzo, “Adaptive multicarrier modulation: A convenient framework for time frequency processing in wireless communications,” Proc. IEEE, vol. 88, pp. 611–640, May 2000.
[52] S. M. Lee, Y. S. Park and D. J. Park, “Fast bit and power allocation algorithm for OFDM systems,” in Proc. IEEE VTC-Fall, 2004, vol. 1, pp. 503–506.
[53] S. K. Lai, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Adaptive trellis coded MQAM and power optimization for OFDM transmission,” in Proc. IEEE VTC, 1999, vol. 1, pp. 290–294.
[54] D. Wang, Y. Cao, and L. Zheng, “Efficient two-stage discrete bit-loading algorithms for OFDM systems,” IEEE Trans. Veh. Technol., vol. 59, no. 7, pp. 3407–3416, Sep. 2010.
[55] M. Patzold, Mobile Fading Channels. New York: Wiley, 2002.
[56] A. Goldsmith, Wireless Communications. Singapore: Cambridge University, 2005.