跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陶鵬舉
Tao Peng-Chu
論文名稱: 超輕鎂鋰合金之微弧陽極處理與腐蝕研究
Micro arc Anode processing and Crossion Research on Super Light Mg-Li alloy
指導教授: 李雄
Shyong Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系在職專班
Executive Master of Mechanical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 87
中文關鍵詞: 腐蝕研究超輕鎂鋰合金微弧陽極
外文關鍵詞: Crossion, Super Light Mg-Li alloy, Micro arc, Sc
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以不同電解液對鎂鋰合金系列LAZ1110、LAZ1110+Be、LAZ1110+Sc、LAZ1110+Be+Sc進行微弧陽極處理的方式以改善耐蝕性,並探討其效果及差異性。期望此一研究之成果,日後能運用於提升鎂鋰合金之耐蝕強度,並增加其應用的廣泛性。實驗先以固定脈衝頻率配合不同電解液及不同處理時間對LAZ1110、LAZ1110+Be、LAZ1110+Sc、LAZ1110+Be+Sc等四種材料進行微弧陽極處理用以決定出適合之電解液種類及最佳處理時間並分辨出四種材料的差異性。實驗結果顯示為氫氧化鈉、矽酸鈉、次磷酸鈉、乙二酸所組成之陽極處理液效果優於氫氧化鉀、矽酸鉀之陽極處理液。時間參數部份可獲得最佳陽極膜之處理時間為8min.。四種材料差異性方面,LAZ1110+Be 為其四種材料中其抗蝕性最差的,而LAZ1110+Sc 為其四種材料中其抗蝕性最佳的,乃由於添加Be 元素具有減少熔融金屬表面的氧化作用,並有阻燃的效果,造成LAZ1110+Be 於陽極處理的過程中破壞陽極膜的生成,而Sc 原素本身既有增加抗蝕的效果,故LAZ1110+Sc 為其四種材料中其抗蝕性最佳的。


    An environment-friendly chemical conversion coating for Mg–Li alloys (LAZ1110, LAZ1110+Be, LAZ1110+Sc, LAZ1110+Be+Sc ) were obtained by using sodium hydroxide, silicic acid, hypophosphorous acid and glycol acid solution. The influencing factors of solutions conversion coating were discussed through orthogonal experiments, and the optimum processing parameters were confirmed. Then morphology, composition, the forming process and corrosion resistance of the coating were investigated. The surface morphology and composition were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction spectroscopy (XRD) techniques. The corrosion resistance was assessed by means of potentiodynamic polarization measurements and electrochemical impedance spectra (EIS). The results of electrochemical potentiodynamic polarization indicated that the solution conversion coating provided effective protection to the substrate of LAZ1110+Sc alloy.

    摘要………………………………………………………………… Ⅰ Abstract…………………………………………………………… II 誌謝………………………………………………………………… III 目次………………………………………………………………… V 圖目次……………………………………………………………… VII 表目次……………………………………………………………… X 第一章 研究背景與目的…………………………………………… 1 1.1 研究背景……………………………………………… 1 1.2 研究目的……………………………………………… 6 第二章 文獻回顧…………………………………………………… 7 2.1 鎂及鎂合金的腐蝕特性…………………………………… 8 2.1.1 鎂在水溶液中之反應…………………………………… 8 2.1.2 鎂的活性………………………………………………… 9 2.2 金屬元素對鎂及其合金的影響……………………………… 10 2.3 環境對鎂合金腐蝕之影響…………………………… 13 2.4 鎂及其合金之表面耐蝕處理………………………… 17 2.4.1 電鍍……………………………………………… 18 2.4.2 氣相沈積法……………………………………… 18 2.4.3 化成處理………………………………………… 19 2.4.4 鎂合金之微弧陽極處理………………………… 21 2.4.4.1 微弧陽極膜形成機制……………………… 22 2.4.4.2 微弧陽極膜之結構………………………… 25 2.4.4.3 電壓電流對微弧陽極化處理之影響……… 26 2.4.4.4 施加不同脈衝頻率條件對陽極膜之影響… 27 2.4.4.5 電解液之選擇及對陽極膜之影響………… 29 第三章 實驗方法及架構…………………………………………… 31 3.1 實驗架構及設備……………………………………… 31 3.2 實驗方法及步驟……………………………………… 33 3.2.1 實驗材料與試片準備…………………………… 33 3.2.2 脈衝電流參數實驗條件………………………… 36 3.2.3 第一階段實驗條件及目的………………………… 37 3.3 實驗結果表面型態及成份分析……………………… 41 3.4 實驗結果陽極膜耐蝕效果測試……………………… 42 第四章 結果與討論……………………………………………… 43 4.1 脈衝電流配合電解液(一)對陽極膜之影響………… 43 4.2 脈衝電流配合電解液(二)對陽極膜之影響………… 52 4.3 脈衝電流配合電解液(二)處理時間對陽極膜之影響 62 4.3.1 表面分析………………………………………… 62 4.3.2 斷面分析………………………………………… 68 4.4 電化學極化曲線測試………………………………… 78 4.4.1 脈衝電流配合不同陽極處理液之極化曲線分析… 78 4.4.2 脈衝電流配合不同時間參數之極化曲線分析…… 82 第五章 結論………………………………………………………… 84 參考文獻…………………………………………………………… 86

    [1] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, NACE,Houston, TX, USA, 1974.
    [2] J. H. Nordlien, S. Ono, N. Masuko, K. Nisancioglu, “A TEM investigation ofnaturally formed oxide films on pure magnesium, Corrosion science, 39, 8, (1997),1397.
    [3] M.M. Avedesian, H. Baker (Eds.), Magnesium and Magnesium Alloys,ASM Specialty Handbook, ASM International, Materials Park, OH, USA (1999) p. 194.
    [4] A. L. Rudd, C. B. Breslin, F. Mansfeld, “The corrosion protection afforded by rare earth conversion coatings applied to magnesium”, Corrosion science, 42, (2000),275.
    [5] K. Huber, “Anodic formation of coatings on magnesium. Zinc, and cadmium”,Journal of elrctrochemical society, 100, 8, (1953), 376.
    [6] The Dow chemical company, G.B. Pat. 762,195, (1956).
    [7] S, J, Xia, R. Yue, R. G. Rateick Jr., V. I. Birss, “Electrochemical studies of AC/DC anodized Mg alloy in NaCl solution, Journal of the electrochemical society, 151, 3, (2004), B179.
    [8] V. Birss, S. Xia, R. Yue, R. G. Rateick Jr., “Characterization of oxide films
    formed on Mg-base WE43 alloy using AC/DC anodization in silicate
    solutions".
    [9] J. E. Gray, B. Luan, “Protective coatings on magnesium and its alloys-a critical review”, Journal of alloys and compounds, 336, (2002), 88.
    [10] G. Song, A. Atrens, M. Dargusch, “Influence of microstructure on the
    corrosion of die-cast AZ91D”, Corrosion science, 41, (1999), 249.
    [11] A. K. Dahle, Y. C. Lee, M. D. Nave, P. L. Schaffer, D. H. StJohn, “Development of the as-cast microstructure in magnesium-aluminium alloys”, Journal of light metals, 1, (2001), 61.
    [12] A. K. Sharma, R. U. Rani, S. M. Mayanna, “Therma; studies on electrodeposited black oxide coating on magnesium alloys”, Thermochimica acta, 376, (2001), 67.
    [13] A. Yamamoto, t. Ashida, Y. Kouta, K. B. Kim, S. Fukumoto, H. Tsubakino,“Precipitation in Mg-(4-13)%Li-(4-5)%Zn ternary alloys”, Materials transactions,44, 4, (2003), 619.
    [14] O. Lunder, T. Kr. Aune, K. nisancioglu, “Effect of Mn additions on the corrosion behavior of mould-cast magnesium ASTM AZ91”, Corrosion, 43, 5, (1987), 291.
    [15] B. L. Mordike, T. Ebert, “Magnesium properties- applications- potential”,Materials science and engineering A302, (2001), 37.
    [16] S. J. Splinter, N. S. McIntyre, P. A. W. van der Heide, T. Do, “Influence of low 209 level iron impurities on the initial interaction of water vapour with polycrystallinemagnesium surfaces”, Surface science, 317, (1994), 194.
    [17] R. Ambat, N. N. Aung, W. Zhou, “Study on influence of chloride ion and pH on the corrosion and electrochemical behavior of AZ91D magnesium alloy”, Journal of applied electrochemistry, 30, (2000), 865.
    [18] K. T. Rie, J. Whole, “Plasma-CVD of TiCN and ZrCN films n light metals”,Surface and coatings technology, 112, (1999), 226.
    [19] Y. Mizutani, S. J. Kim, R. Ichino, M. Okido, “Anodizing of Mg alloys in alkaline solutions”, Surface and coatings technology, 169-170, (2003), 143.
    [20] H. H. Shih and S. H. Tzou, Surface and Coatings Technolopy. 124 (2000)
    278.

    QR CODE
    :::