跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林育賢
Yu-Hsien Lin
論文名稱: 垂直式振動床中漿態系統下不同黏度間隙流體對大顆粒與其動態行為的影響
The Brazil-nut effect in a quasi-2D vertical vibrated granular bed, in slurry system the larger particle with difference viscosity of interstitial liquid
指導教授: 蕭述三
Shu-San Hsiao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系在職專班
Executive Master of Mechanical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 69
中文關鍵詞: 間隙流體黏度粒子流巴西豆現象振動床漿態系統
外文關鍵詞: Granular flow, Slurry System, Vibrated Bed, Braz
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以實驗的方法探討在漿態系統下,類二維顆粒振動床內,不同黏度的間隙流體對於顆粒床中粒徑較大的大顆粒(或者稱為Intruder)的巴西豆現象之影響。本研究以高速攝影機擷取大顆粒在顆粒床裡的動態行為,並配合影像技術與粒子追蹤方法得到大顆粒隨著時間而上升之動態過程。
    本研究發現在漿態系統下,間隙流體的黏度對於大顆粒上升的動態行為扮演重要的角色,當振動條件固定,間隙流體黏度越大時,大顆粒的上升時間與所受到的阻力都有隨間隙流體黏度增加而變大的趨勢,而上升速度與滲透長度則呈現相反趨勢。也發現無論在乾或濕系統下,大顆粒之上升時間隨著無因次振動加速度減少而增加,隨著振動頻率增加而增加。並且大顆粒之上升速度會隨著無因次振動加速度減少而減少,隨著振動頻率增加而減少。


    This study investigates experimentally the Brazil-nut effect in a quasi-2D vertical vibrated granular bed, in slurry system the larger particle (or the so-called intruders) with difference viscosity of interstitial liquid. The Brazil nut effect means the larger particle rises to the top of the container and the smaller granular move to the bottom. The dynamics of the larger particle is recorded by using a high speed camera. By using image processing technology and the particle tracking method, the rise dynamic of the intruder was successfully measured and analyzed.
    This study demonstrates that the interstitial fluid viscosity plays an important role in the rise dynamics of intruder in slurry system. The effects of vibration conditions and viscosity of interstitial liquid on the dynamics of intruder are investigated in the study. The results show that the rising time and drag force increases with increasing viscosity of interstitial liquid. But the rising velocity and penetration length decreases with increasing viscosity of interstitial liquid. It also shows that the rising time becomes slower as the smaller dimensionless vibration acceleration and the larger vibration frequency is applied in the granular system. Finally the rising velocity is enhanced with the increase of dimensionless vibration acceleration and is reduced with the increase of vibration frequency.

    摘要 ........................................................................................................................ I Abstract ................................................................................................................. II 目錄 ..................................................................................................................... III 附表目錄 .............................................................................................................. V 附圖目錄 ............................................................................................................. VI 符號說明 .......................................................................................................... VIII 第一章 簡介 ......................................................................................................... 1 1.1 粒子流簡介 ................................................................................................................ 1 1.2 粒子流與一般流體之異同 ........................................................................................ 2 1.3 顆粒體材料的運動現象 ............................................................................................ 3 1.4 顆粒體材料的分離現象 ............................................................................................ 5 1.4.1 巴西豆現象與逆巴西豆現象 ................................................................................ 5 1.4.2 單一大顆粒置於顆粒床內的分離現象 ................................................................ 8 1.4.3 液體作用力對單一大顆粒體材料動態行為與分離現象的影響 ...................... 11 1.5 研究動機 .................................................................................................................. 13 第二章 實驗設備與方法 ................................................................................... 15 2.1 實驗設備 .................................................................................................................. 15 2.2 實驗參數說明 .......................................................................................................... 18 2.3 實驗流程 .................................................................................................................. 18 2.4 影像分析程式 .......................................................................................................... 19 2.5 分析參數 .................................................................................................................. 20 IV 2.6 誤差分析 .................................................................................................................. 21 第三章 結果與討論 ........................................................................................... 22 3.1 間隙流體黏度對大顆粒粒子與其動態行為的影響 .............................................. 22 3.2 間隙流體黏度對大顆粒粒子上升時間的影響 ...................................................... 23 3.3 間隙流體黏度對大顆粒粒子上升速度的影響 ...................................................... 24 3.4 在漿態系統下振動頻率對大顆粒粒子與其動態行為的影響 .............................. 26 3.5 在漿態系統下振動頻率對大顆粒粒子與其上升時間的影響 .............................. 27 3.6 在漿態系統下振動頻率對大顆粒粒子與其上升速度的影響 .............................. 27 3.7 在漿態系統下振動加速度對大顆粒粒子與其動態行為的影響 .......................... 29 3.8 在漿態系統下振動加速度對大顆粒粒子與其上升時間的影響 .......................... 30 3.9 在漿態系統下振動加速度對大顆粒粒子與其上升速度的影響 .......................... 30 第四章 結論 ....................................................................................................... 32 參考文獻 ............................................................................................................. 33

    Aoki, K. M., Akiyama T., Maki Y. and Watanabe T., 1996, “Convective Roll Patterns in
    Vertically Vibrated Beds of Granules,” Physical Review E, Vol. 54, pp. 874-883.
    Bagnold, R.A., 1954, “Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a
    Newtonian Fluid Under Shear, “Proceeding of the Royal Society London, Series A, Vol.
    225, pp. 49-63.
    Breu, A. P. J., Ensner, H. M., Kruelle, C. A. and Rehberg I., 2003, “Reversing the Brazil-Nut
    Effect: Competition Between Percolation and Condensation,” Physical Review Letters,
    Vol. 90, 014302.
    Brito, R. and Soto, R., 2009, “Competition of Brazil Nut Effect, Buoyancy, and Inelasticity
    Induced Segregation in a Granular Mixture,” European Physical Journal Special Topics,
    Vol. 179, pp. 207-219.
    Campbell, C. S. and Brennen, C. E., 1985, “Chute Flows of Granular Material: Some
    Computer Simulations,” Journal of Allied Mechanics, Vol. 52, pp.72-78.
    Campbell, C. S. and Brennen, C. E., 1985, “Computer Simulation of Granular Shear Flows,”
    Journal of Fluid Mechanicsanism, Vol. 151, pp. 167-188.
    Ciamarra, M. P., De Vizia, M. D., Fierro, A., Tarzia, M., Coniglio, A. and Nicodemi, M., 2006,
    “Granular Species Segregation Under Vertical Tapping: Effects of Size, Density, Friction,
    and Shaking Amplitude,” Physical Review Letters, Vol. 96, 058001.
    Clement, C. P., Pacheco-Martinez, H. A., Swift, M. R. and King, P. J., 2010, “The
    Water-Enhanced Brazil Nut Effect,” Europhysics Letters, Vol. 91, 54001.
    Cooke, W., Warr, S., Huntley, J. M. and Ball, R. C., 1996, “Particle Size Segregation in a
    Two-Dimensional Bed Undergoing Vertical Vibration,” Physical Review E, Vol. 53, pp.
    2812-2822.
    34
    Duran, J., Rajchenbach, J. and Clement, E., 1993, “Arching Effect Model for Particle Size
    Segregation,” Physical Review Letters, Vol. 70, pp. 2431-2434.
    Duran, J., Mazozi, T., Clement, E. and Rajchenbach, J., 1994, “Size Segregation in a
    Two-Dimensional Sandpile: Convection and Arching Effects,” Physical Review E, Vol.
    50,pp. 5138–5141.
    Elperin, T. and Golshtein, E., 1997, “Effects of Convection and Friction on Size Segregation
    in Vibrated Granular Beds,” Physica A, Vol. 247, pp. 67-78.
    Faraday, M., 1831, “On a Peculiar Class of Acoustical Figures and on Certain Forms
    Assumed by Groups of Particles upon Vibrating Elastic Surfaces,” Phil. Trans. R. Soc.,
    London, Vol. 52, pp. 299-340.
    Fiedor, S.J., Ottion, J.M., 2003, “Dynamics of Axial Segregation and Coarsening of Dry
    Granular Materials and Slurries in Circular and Square Tubes,” Physical Review Letters,
    Vol. 91, 244301.
    Finger, T., Stannarius, R., 2007, “Influences of the Interstitial Liquid on Segregation Patterns
    of Granular Slurries in a Rotating Drum,” Physical Review E, Vol. 75, 301308.
    Gotzendorfer, A., Tai, C. H., Kruelle, C. A., Rehberg, I. and Hsiau S. S., 2006, “Fluidization
    of a Vertically Vibrated Two-Dimensional Hard Sphere Packing: A Granular
    Meltdown,” Physical Review E, Vol. 74, 011304.
    Hong, D. C., Quinn, P. V. and Luding, S., 2001, “Reverse Brazil Nut Problem: Competition
    Between Percolation and Condensation,” Physical Review Letters, Vol. 86, pp.
    3423-3426.
    Hsiau, S. S. and Yu, H. Y., 1997, “Segregation Phenomena in a Shaker,” Powder Technology,
    Vol. 93, pp. 83-88.
    Hsiau, S. S. and Pan, S. J., 1998, “Motion State Transitions in a Vibrated Granular Bed,”
    Powder Technology, Vol. 96, pp.219-226.
    Hsiau, S. S., Wu, M. H. and Chen, C. H., 1998,“Arching Phenomena in a Vibrated Granular
    35
    Bed,” Powder Technology, Vol. 99, pp. 185-193.
    Hsiau, S. S. and Chen, C. H., 2000, “Granular Convection Cells in a Vertical Shaker,” Powder
    Technology, Vol. 110, pp. 239-245.
    Hsiau, S.S. and Tai, C.H., 2004, “Dynamic Behaviors of Powders in a Vibrating Bed,”
    Powder Technology., Vol. 139, No. 3, pp. 221-232.
    Huerta, D. A. and Ruiz-Suarez, J. C., 2004, “Vibration-Induced Granular Segregation: A
    Phenomenon Driven by Three Mechanisms,” Physical Review Letters, Vol. 96,
    pp.219-226.
    Jain, N., Ottino, J.M., Lueptow, R.M., 2004, “Effect of Interstitial Fluid on a Granular
    Flowing Layer,” Journal of Fluid Mechanics. 508, pp. 23-44.
    Jullien, R., Meakin, P. and Parlovitch, A., 1992, “Three-Dimensional Model for Particle-Size
    Segregation by Shaking,” Physical Review Letters., Vol. 69, pp. 640-643.
    Jullien, R., Meakin, P. and Pavlovitch, A., 1993, “3-Dimensional Model for Particle-Size
    Segregation by Shaking - Reply,” Physical Review Letters., Vol. 70 , pp.2195.
    Knight, J. B., Jaeger, H. M. and Nagel, S. R., 1993, “Vibration-Induced Size Separation in
    Granular Media: The Convection Connection,” Physical Review Letters, Vol. 92,
    114301.
    Knight, J. B., Ehrichs, E. E., Kuperman, V. Y., Flint, Jaeger, H. M., and Nagel, S. R., 1996,
    “ An Experimental Study of Granular Convection,” Physical Review E., Vol. 54, pp.
    5726-5738.
    Knight, J. B., 1997, “External Boundaries and Internal Shear Bands in Granular Convection,”
    Physical Review E., Vol. 55, No. 5, pp. 6016-6023.
    Liao, C. C., Hsiau, S. S., 2009, “Influence of Interstitial Fluid Viscosity on Transport
    Phenomenon in Sheared Granular Materials,” Chemical Engineering Science, Vol. 64,
    pp. 2562-2569.
    36
    Liao, C. C., Hsiau, S. S., Tsai, T. H. and Tai, C. H., 2010, “Segregation to Mixing in Wet
    Granular Matter under Vibration,” Chemical Engineering Science, Vol. 65, pp.
    1109-1116.
    Liffman, K., Muniandy, K., Rhodes, M., Gutteridge, D. and Metcalfe, G., 2001, “A
    Segregation Mechanism in a Vertically Shaken Bed,” Granular Matter, Vol. 3, pp.
    205-214.
    Lu, L. S. and Hsiau, S. S., 2008, “DEM Simulation of Particle Mixing in a Sheared Granular
    Flow,” Particuology, Vol. 6, pp. 445-454.
    Mobius, M. E., Cheng, X., Karczmar, G. S., Nagel, S. R. and Jaeger, H. M., 2004, “Intruders
    in the Dust: Air-Driven Granular Size Separation,” Physical Review Letters, Vol. 93,
    198001.
    Neederman, R. M., 1992, “Statics and Kinematics of Granular Materials,” Cambridge
    University Press.
    Nahmad-Molinari, Y., Canul-Chay, G. and Ruiz-Suarez, J. C., 2003, “Inertia in the Brazil Nut
    Problem,” Physical Review E, Vol. 68, 041301.
    Reynolds, O., 1885, “On the Dilatancy of Media Composed of Rigid Particles in Contact,
    With Experimental Illustrations,” Philosophical Magazine, Vol. 20, pp. 469-481.
    Reynolds, O., 1886, “Experiments Showing Dilatancy, A Property of Granular Materials
    Possibly Connected with Gravitation,” Proceedings of Royal Institution of Great Britain,
    Vol. 11, pp. 354-363.
    Rosato, A. D., Ketherine, J. S., Friedrich, P. and Robert, H. S., 1987, “Why the Brazil Nuts are
    on Top: Size Segregation of Particulate Matter by Shaking,” Physical Review Letters,
    Vol. 58, pp. 1038-1040.
    Saez, A., Vivanco, F. and Melo, F., 2005, “Size Segregation, Convection, and Arching Effect,”
    Physical Review E, Vol. 72, 021307.
    37
    Sánchez1, I., Gutiérrez, G., Zuriguel, I. and Maza, D., 2010, “Sinking of Light Intruders in a
    Shaken Granular Bed,” Physical Review E, Vol. 81, 062301.
    Shamlou, P.A., 1998, Handling of Bulk Solids, Butterworths, London.
    Shinbrot, T. and Muzzio, F. J., 1998, “Reverse Buoyancy in Shaken Granular Beds,” Physical
    Review Letters, Vol. 81, pp.4365-4368.
    Vanel, L., Rosato, A. D. and Dave R. N., 1997, “Rise-Time Regimes of a Large Sphere in
    Vibrated Bulk Solids,” Physical Review Letters, Vol. 78, pp. 1255-1258.
    V Zivkovic, M J Biggs, and D H Glass1 2009, “Particle Dynamics in a Vibrated Submerged
    Granular Bed as Revealed by Diffusing Wave Spectroscopy,” Journal of Physics D:
    Applied Physics. Vol. 42, 245404.
    Yan, X., Shi, Q., Hou, M., Lu, K. and Chan, C. K., 2003, “Effects of Air on the Segregation of
    Particles in a Shaken Granular Bed,” Physical Review Letters, Vol. 91, 014302.
    Yang, S. C., 2006, “Density Effect on Mixing and Segregation Processes in a Vibrated binary
    Granular Mixture,” Powder Technology, Vol. 164, pp. 65-74.

    QR CODE
    :::