跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江慶興
Ching-Hsing Jiang
論文名稱: 結構型商品之定價與設計-以Target Redemption Notes為例
The Pricing and Design of Structured Notes:A Study of Target Redemption Notes
指導教授: 史綱
Gang Shyy
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融學系
Department of Finance
畢業學年度: 93
語文別: 中文
論文頁數: 50
中文關鍵詞: 結構型商品息滿到期市場利率模型蒙地卡羅模擬
外文關鍵詞: Structured note, Libor Market model, Target redemption, Monte Carlo simulation
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結構型商品是經由財務工程的設計所創造的量身訂作的商品,在過去幾年中,全球蕭條的經濟產生了低利率時代,在這樣的環境之下,結構型商品發展的非常迅速,以滿足投資人的需求。然而,近幾年來,投資大眾預期利率將會開始攀升,無論它的調升速度是多迅速,這樣的預期導致了一般以低利率為設計目標的結構型商品開始變得不受市場上的歡迎。
    一般來說,結構型商品可以由它的連結標的分成兩類,股票連結型以及利率連結型。對利率連結結構型商品來說,有著許多計息方式,本研究針對息滿到期(Target redemption)來進行研討,經由ING Belgium International Finance S.A.所發行的息滿到期商品契約來進行分析。為了建構利率結構及評價商品,本研究採用Libor Market model。而遠期利率(forward rates)在市場利率模型(Libor Market model)的假設下,存在著不同到期日且彼此相關的漂浮項(drift term),傳統的二元樹模型是無法解決這樣的動態利率模型,本研究採用蒙地卡羅模擬來完成這樣的利率結構。此外,也利用這樣的商品契約來闡述這類型商品的避險概念。
    在本研究的後面章節中,也會修改商品契約來分析商品的價值以及商品的平均到期日,藉由這樣的結果,希望能提供給發行者以及投資大眾作為決策參考。


    Structured notes are tailor made products which are created by financial engineering. In the past, global depression economy introduced low interest rates. Under this background, structured notes developed quickly to fit the investor’s demand. However, in recent years, investors expect interest rates to increase. No matter how fast the rates increase, these expectations have resulted in common structured notes, which focus on low interest rates and have become unpopular in the market.
    Generally speaking, structured notes can be divided into two categories by their underlying assets: equity linked notes and interest rate linked notes. There are many payment methods in structured notes. Here, we try to focus on one of these payment methods – Target redemption. A target redemption note contract has been issued by ING Belgium international finance S.A. according to the Libor Market model, in order to construct an interest rate term structure and to value this product. Owing to the fact that forward rates under the Libor Market model exist as a state-dependent drift term, recombining lattices is not able to evolve the interest rate dynamics. Instead, we use the Monte Carlo simulation to do this job. In addition, we will also introduce the concept of hedge for products of this target redemption note contract.
    At the end of our research, we tried to modify this product contract. After having modified the conditions of contract, we analyzed their values as well as the average maturity of the notes. With these results, we hope to bring contributions to the issuer and the investor.

    目 錄 第一章 緒論…………………………………………………………………………1 第一節 研究背景及動機………………………………………………………1 第二節 我國結構型商品現況…………………………………………………3 第三節 利率連結結構型商品…………………………………………………4 第四節 研究目的與方法………………………………………………………6 第五節 論文架構………………………………………………………………7 第二章 理論模型……………………………………………………………………9 第一節 Libor market model…………………………………………………9 第二節 模型參數校準…………………………………………………………12 第三節 參數校準實例…………………………………………………………14 第三章 商品分析及定價……………………………………………………………18 第一節 商品實例………………………………………………………………18 第二節 投資風險………………………………………………………………20 第三節 商品結構分析…………………………………………………………20 第四節 商品價格分析…………………………………………………………22 第五節 商品評價………………………………………………………………24 第四章 敏感性分析與避險策略……………………………………………………28 第一節 敏感性分析……………………………………………………………28 第二節 避險策略………………………………………………………………32 第五章 商品設計與創新……………………………………………………………35 第一節 最高累積上限調整下的商品設計……………………………………35 第二節 履約利率調整下的商品設計…………………………………………38 第三節 計息條件加入Snowball下的商品設計………………………………40 第六章 結論…………………………………………………………………………43 參考文獻……………………………………………………………………………45 中文參考文獻…………………………………………………………………45 英文參考文獻…………………………………………………………………45 附錄…………………………………………………………………………………47 附錄一…………………………………………………………………………47 附錄二…………………………………………………………………………47 附錄三…………………………………………………………………………49 附錄四…………………………………………………………………………49

    參考文獻
    中文參考文獻
    【1】中華民國證券櫃檯買賣中心,衍生性商品,證券新金融商品業務交易概況。
    【2】中華民國證券櫃檯買賣中心,證券商營業處所經營衍生性金融商品交易業務規則,附件三-證券商經營結構型商品連結標的資產範圍。
    【3】中國國際商銀網頁,新台幣結構型商品,http://www.icbc.com.tw/chinese/entrust/entrust04/entrust0407.htm
    【4】彭昭英,SAS與統計分析,儒林圖書有限公司,民93。
    【5】陳松男,結構型金融商品之設計及創新,新陸書局,民93。
    【6】陳松男,結構型金融商品之設計及創新(二),新陸書局,民94。
    【7】寶來證券網頁,股權連結商品,http://www.warrantnet.com.tw/Polaris/composition.web/pageB-5.htm
    英文參考文獻
    【1】Andersen, L., Andreasen, J.,2002,”Volatility skews and extensions of the LIBOR market model”,Applied Mathematical Finance 7, pp. 1-32.
    【2】Black, F.,1976,”The pricing of commodity contracts”,Journal of Financial Economics, 3, pp. 167-179.
    【3】Brace, A., Gatarek D., Musiela, M.,1997,”The market model of interest rate dynamics”,Mathematical Finance, Vol 7 ,127-155.
    【4】Brigo, D., Capitani, C., and Mercurio, F.,2001,On the joint calibration of the Libor market model to caps and swaptions market volatility,Banca IMI, San Paolo-IMI Group
    【5】Brigo, D., Mercurio, F.,2000,”A mixed-up smile”,Risk September.
    【6】Brigo, D., Mercurio, F.,2001,Interest Rate Models Theory and Practice,Springer Verlag
    【7】Brigo, D., Mercurio, F., Rapisarda, F.,2000,Lognormal-mixture dynamics and calibration to market volatility smiles,working paper,Banca IMI, Milan.
    【8】Cox, J., Ross, S., and Rubinstein, M.,1979,”Option pricing:A simplified approach”,Journal of Financial Economics 7, pp. 229-263.
    【9】Glassman, P., Zhao, X.,2000,”Arbitrage-free discretization of lognormal forward LIBOR and swap rate models”,Finance and Stochastics, 4.
    【10】Jarrow, Turnbull,2000,Derivatives securities,2nd edition,South-western
    【11】John C. Hull,2003,Options, Futures, and Other Derivatives,5th edition,Prentice Hall
    【12】Justin London,2005,Modeling derivatives in C++,John Wiley and Sons, Inc.
    【13】Jamshidian, F.,1997,”Libor and swap market models and measures”,Finance and Stochastics, 4, pp. 293-330.
    【14】Miltersen, Kristlan R, Klaus Sandmann and Dieter Sondermann,1997,”Close form solutions for term structure derivatives with log-normal interest rates”,The Journal of Finance,Vol LII, No 1.March, pp 409-430.
    【15】Musiela, M., Rutkowski, M,1997,Martingale Method in Financing Modeling,Springer Verlag
    【16】Rebonato,1998,Interest-Rate Otion Models,2nd edition,John Wiley and Sons, Inc.
    【17】Rebonato,2001,”The stochastic volatility Libor market model”,Risk October.
    【18】Santa Clara, P., Sornette, D.,2001,”The dynamics of the forward interest rate curve with stochastic string shocks”,The Review of Financial Studies 14, pp. 149-185.
    【19】Sidenius, J.,2000,”LIBOR market models in practice”,Journal of Computational Finance 3, pp. 5-26.

    QR CODE
    :::