| 研究生: |
王姵媖 Pei-Ying Wang |
|---|---|
| 論文名稱: |
寬頻放大器暨V頻段射頻接收機前端電路之研製 Implementation of Broadband Amplifier and V-Band RF Receiver Front-End Circuits |
| 指導教授: |
邱煥凱
Hwann-Kaeo Chiou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系在職專班 Executive Master of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 次諧波混頻器 、振盪器 、低雜訊放大器 、V頻帶 、分佈式放大器 、寬頻放大器 |
| 外文關鍵詞: | Subharmonic Mixer, VCO, Oscillator, LNA, Low Noise Amplifier, V Band, Distributed Amplifier, Broadband Amplifier |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究內容為寬頻放大器及V頻帶接收機之前端電路研究,設計的晶片皆利用WIN 0.15 um pHEMT與TSMC 0.18 um CMOS製程研製。論文電路包含3-55 GHz分佈式寬頻放大器、15-50 GHz分佈式寬頻放大器、35-65 GHz串接式寬頻放大器、V頻帶三級串接式低雜訊放大器、27.1 GHz變壓器回授型壓控振盪器、V頻帶次諧波二極體混頻器以及V頻帶次諧波電阻性混頻器。
寬頻放大器設計包含三個電路,其中3-55 GHz分佈式寬頻放大器利用疊接式放大器及電容分容的技巧來設計,量測頻寬為1-53 GHz,功率增益為9.43 dB且增益平坦度為正負2 dB,輸入輸出返回損耗皆大於2 dB;15-50 GHz分佈式寬頻放大器利用有限接地共平面波導的優點及二級串接分佈式架構來設計,量測頻寬為13-54 GHz,功率增益為10.45 dB且增益平坦度為正負1.2 dB,輸入輸出返回損耗皆大於5 dB;35-65 GHz串接式寬頻放大器利用四級串接放大器及自给偏壓的方式來設計,量測頻寬為28-59 GHz,功率增益介於13至26 dB,輸入輸出返回損耗皆大於3.9 dB。
V頻帶接收機前端電路包含四個電路,其中V頻帶三級串接式低雜訊放大器利用源極電感退化技巧來達到輸入及雜訊匹配的最佳化,頻率在60 GHz,功率增益為24.35 dB,輸入輸出返回損耗皆大於2.58 dB,雜訊指數為3.2 dB;27.1 GHz變壓器回授型壓控振盪器利用變壓器來獲得較低的相位雜訊,在1 MHz的相位雜訊為-94 dBc/Hz,輸出功率為-15 dBm,可調頻率範圍為847 MHz;V頻帶次諧波二極體混頻器,在射頻訊號60 GHz時有最小轉換損耗12.075 dB,輸入功率1-dB壓縮點為 4 dBm,輸入三階截斷點為15 dBm;V頻帶次諧波電阻性混頻器,在射頻訊號60 GHz時有最小轉換損耗10.593 dB,輸入功率1-dB壓縮點為9 dBm,輸入三階截斷點為13 dBm。
The work in this thesis focuses on broadband amplifiers and V-band RF receiver front-end circuits. The designed circuits include three broadband amplifiers with different topologies and bandwidths, a V-band low noise amplifier, a 27.1 GHz transformer feedback voltage control oscillator, a V-band subharmonic diode mixer and a V-band subharmonic resistive mixer. Those designs were fabricated in WIN 0.15 um pHEMT technology and TSMC 0.18 um CMOS process.
The thesis first addresses the performance and design of three different broadband amplifiers. The 3-55 GHz distributed amplifier made use of a pHEMT cascode gain cell capacitively coupled to the gate line. The circuit has been experimentally verified for its functionality. This circuit achieved a gain of 9.43±2 dB from 1 to 53 GHz, and the input/output return losses of more than 2 dB. The 15-50 GHz distributed amplifier was implemented with two-cascaded three-stage topology and the finite-ground coplanar waveguide for the transmission line design. The measured result showed this circuit had a gain of 10.5±1.2 dB from 13 to 54 GHz, and the input/output return losses of more than 6 dB. The 35-65 GHz broadband amplifier was designed with the four-cascaded single-stage scheme to achieve the high gain in the high frequency. The self-bias architecture was also used for the single positive supply operation. The cascade amplifier exhibited a gain of 13-26 dB in the bandwidth from 28 to 59 GHz, and the input/output return losses of more than 3.92 dB.
The thesis further addresses V-band RF receiver front-end circuits. The V-band three-stage-cascaded LNA architecture was a derivative of the inductive source degenerated topology. The LNA achieved a gain of 24.35 dB at 60 GHz, a noise figure of 3.2 dB, and the input/output return losses of more than 2.58 dB. The 27.1 GHz transformer feedback voltage controlled oscillator utilized the transformer to lower the phase noise. This voltage controlled oscillator obtained a tuning range of 847 MHz, an output power of -15 dBm, and the phase noise of -94 dBc/Hz at 1 MHz offset. The V-band subharmonic diode mixer was based on an antiparallel Schottky diode pair. The design exhibited a 12.075 dB conversion loss at the RF frequency of 60 GHz, the LO frequency of 27.1 GHz, and the IF frequency of 5.8 GHz. The measured input power at the 1-dB gain compression point was 4 dBm, and the input third order inter-modulation intercept point was 15 dBm. The V-band subharmonic resistive mixer achieved a 10.593 dB conversion loss at the RF frequency of 60 GHz, the LO frequency of 27.1 GHz, and the IF frequency of 5.8 GHz. The measured input power at the 1-dB gain compression point was 9 dBm, and the input third order inter-modulation intercept point was 13 dBm.
[1]M. Häfele, A. Trasser, K. Beilenhoff, H. Schumacher, “A GaAs distributed amplifier with an output voltage of 8.5Vpp for 40Gb/s modulators,” Gallium Arsenide and Other Semiconductor Application Symposium, Oct. 2005, pp. 345-348.
[2]XD1002 product datasheet, Mimix Broadband Inc. Houston. 2002. www.mimixbroadband.com
[3]M. Häfele, K. Beilenhoff, and H. Schumacher, “A GaAs PHEMT distributed amplifier with low group delay time variation for 40 GBit/s optical systems,” European Microwave Conference, Oct. 2003, pp. 1091-1094.
[4]M. Häfele, K. Beilenhoff, and H. Schumacher, “GaAs distributed amplifiers with up to 350 GHz gain-bandwidth product for 40 Gb/s LiNbO3 modulator drivers,” European Microwave Conference, vol. 1, Oct. 2005.
[5]Y. Ayasli, S. -W. Miller, R. -L. Mozzi, and L. -K. Hanes, “Capacitively coupled travelling-wave power amplifier,” IEEE Transactions on Electron Devices, vol. 31, pp.1937-1942, 1984.
[6]S. - N. Prasad, J. - B. Beyer, R. - C. Becker, and I. - S. Chang, “Power-bandwidth considerations in the design of MESFET distributed amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 36, pp. 1117-1123, Jul.1988.
[7]P. - S. Wu, T. - W. Huang, and H. Wang, “An 18-71 GHz multi-band and high gain GaAs MMIC medium power amplifier for millimeter-wave applications,” IEEE MTT-S, Jun. 2003, pp. 863-866.
[8]XD1001 product datasheet, Mimix Broadband Inc. Houston. 2002. www.mimixbroadband.com
[9]M. - C. Chuang, M. - F. Lei, and H. Wang, “A broadband medium power amplifier for millimeter applications,” vol. 3, Dec. 2005, APMC.
[10]H. Shigematsu, N. Yoshida, M. Sato, T. Hirose, and Y. Watanabe, “45-GHz distributed amplifier with a linear 6-Vp-p output for a 40-Gb/s LiNbO modulator driver circuit,” Gallium Arsenide Integrated Circuit Symposium, vol. 1, Jun. 2001, pp. 137-140.
[11]XL1001 product datasheet, Mimix Broadband Inc. Houston. 2002. www.mimixbroadband.com
[12]K. - L. Deng, T. - W. Huang, and H. Wang “Design and analysis of novel high-gain and broad-band GaAs pHEMT MMIC distributed amplifiers with traveling-wave gain stages”, IEEE Transactions on Microwave Theory and Techniques, vol. 51, pp. 2188-2196, Nov. 2003.
[13]B. - Y. Banyamin and M. Berwick, “The gain advantages of four cascaded single stage distributed amplifier configurations,” IEEE MTT-S, Jun. 2000, pp. 1325-1328.
[14]AppNote_CFS0103-SB_Biasing.doc, www.mimixbroadband.com
[15]Y. Mimino, K. Nakamura, Y. Hasegawa, Y. Aoki, S. Kuroda, and T. Tokumitsu, “A 60 GHz millimeter-wave MMIC chipset for broadband wireless access system front-end,” IEEE MTT-S, vol. 3, Jun. 2002, pp. 1721-1724.
[16]K. Nishikawa, B. Piernas, K. Kamogawa, T. Nakagawa, and K. Araki, “Compact LNA and VCO 3-D MMICs using commercial GaAs PHEMT technology for V-band single-chip TRX MMIC,” IEEE MTT-S, vol. 3, Jun. 2002, pp. 1717-1720.
[17]A. Bessemoulin et al., “Comparison of coplanar 60-GHz low-noise amplifiers Based on a GaAs PM-HEMT technology,” IEEE Microwave and Guided Wave Letter, vol. 8, pp. 396-398, Nov. 1998.
[18]楊家軍,“V應用於V頻段射頻接收機前端電路之研製” ,碩士論文,國立中央大學,2007。
[19]T. Song, S. Ko, D. - H. Cho, H. - S. Oh, C. Chung, and E. Yoon, “A 5GHz transformer-coupled CMOS VCO using bias-level shifting technique,” RFIC, Jun. 2004, pp. 127-130.
[20]D. Robertson, and S. Lucyszyn, “RFIC and MMIC design and technology,” London Institution of Electrical Engineers, 2001.
[21]連婉茹,“V頻段微型化混波器之研製” ,碩士論文,國立中央大學,2006。
[22]K. Bowers and P. Riehl, “Broadband Microwave Distributed Amplifier”.
[23]Bal S. Virdee, Avtar S. Viredee, and Ben Y. Banyamin, “Broadband Microwave Amplifiers,” Artech House, 2005.
[24]M. Sato, T. Hirose, and Y. Watanabe, “A 70-GHz bandwidth and 9-dB gain travelling wave amplifier Using 0.15-um Gate InGaP/InGaAs HEMTs with coplanar transmission line technology,” European Microwave Conference, Oct. 2000, pp. 1-4.
[25]M. Leich, M. Ludwig, H. Massler, A. Hulsmann, and M. Schlechtweg, “Two-stage ultra-broadband driver for optical modulator,” Electronics Letters, vol. 36, no. 22, pp. 1862-1863, Oct. 2000.
[26]S. Cai, and Z. Wang, “0-80GHz 0.15 um GaAs pHEMT distributed amplifier for optic-fiber transmission systems,” ICMMT, Apr. 2007, pp 1-3.
[27]G. - E. Ponchak, L. - P. - B Katehi, E. - M. Tentzeris, “Finite ground coplanar (FGC) waveguide: It’s characteristics and advantages for use in RF and Wireless communication circuits”.
[28]N. S. Rainee, “Coplanar Waveguide Circuit, Components, and System,” Wiley Interscience, A John Wiley & Sons, Inc. Publication.
[29]C. - P. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device application,” IEEE Transactions on Microwave Theory and Techniques, vol. 17, pp. 1087-1090, Dec. 1969.
[30]HMC283 Data, Hittite Microwave Corporation, Chelmsford, MA, 2002.
[31]K. - Y. Lin, I - S. Chen, and H. - K. Chiou, “A 26 - 65 GHz GaAs pHEMT cascaded single stage distributed amplifier with high gain/area efficiency,” APMC, vol. 2, Dec. 2006, pp. 722-725.
[32]呂學士編譯,本城何彥原著,微波通訊半導體電路,全華科技股份有限公司,民國89年。
[33]John Roger and Calvin Plett, Radio Frequency Integrated Circuit Design, Artech House, 2003.
[34]K. Fujii, M. Adamski, P. Bianco, D. Gunyan, J. Hall, R. Kishimura, C. Lesko, M. Schefer, S. Hessel, H. Morkner, and A. Niedzwiecki, “A 60GHz MMIC chipset for 1-Gbith wireless links,” IEEE MTT-S , vol. 3, Jun. 2002, pp. 1725-1728.
[35]B. - J. Jang, I. - B. Yom, and S. - P. Lee, “Millimeter wave MMIC low noise amplifiers using a 0.15 um commercial pHEMT process,” ETRI Journal, vol 24, Jun. 2002.
[36]李泰成審校,Behzad Razavi原著,類比 COMS 積體電路設計,滄海書局,民國94年。
[37]賴永齡、黃建彰及邱煥凱,微波積體電路設計,民國96年。
[38]C. - R. - C. De Ranter and M. - S. - J. Steyaert, “A 0.25-μm CMOS 17 GHz VCO,” IEEE International Solid-State Circuit Conference, Feb 2001, pp. 370-371.
[39]S. Ko, J. - G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz Integrated CMOS Frequency Sources with a Quadrature VCO using Transformers,” RFIC, Jun. 2004, pp. 269-272.
[40]T. - P. Wang, R. - C. Liu, H. - Y. Chang, L. - H. Lu, and H. Wang, “A 22-GHz Push-Push CMOS Oscillator Using Micromachined Inductors,” IEEE Microwave and Wireless Components Letters, vol. 15, pp. 859–861, Dec. 2005.
[41]S. Lo and S. Hong, “Noise Property of a Quadrature Balanced VCO,” IEEE Microwave and Wireless Components Letters, vol. 15, pp.673–675, Oct. 2005.
[42]W. - L. Ng, G. - C. - T. Leung, K. - C. Kwok, L. - L. - K. Leung, and H. - C. Luong, “A 1V 24GHz 17.5mW PLL in 0.18 μm CMOS,” IEEE International Solid-State Circuit Conference ,vol. 1, Feb. 2005, pp. 158-159, 590.
[43]M. - W. Chapman, and S. Raman, “A 60-GHz uniplanar MMIC 4/spl times/ subharmonic mixer,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, pp.2580-2588, Nov. 2002
[44]K. - W. Yeom, D. - H. Ko, “A novel 60-GHz monolithic star mixer using gate drain-connected pHEMT diodes,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, Jul. 2005.
[45]M. Varonen, M. Karkkainen, J. Riska, P. Kangaslahti, K. - A. - I. Halonen, “Resistive HEMT mixers for 60-GHz broad-band telecommunication,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 1322-1330, 2005.
[46]S. - E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE Journal of Solid-State Circuits ,vol. 40, pp. 2174 - 2186, 2005.
[47]S. - E. Gunnarsson and H. Zirath, “A 60 GHz MMIC dual-quadrature mixer in pHEMT technology for ultra wideband IF signals and high LO to RF isolation,” IEEE MTT-S, 2005, pp.4.
[48]S. Gunnarsson, D. Kuylenstierna, and H. Zirath,” A 60 GHz MMIC pHEMT image reject mixer with integrated ultra wideband IF hybrid and 30 dB of image rejection ratio,” APMC, vol. 1, Dec. 2005.
[49]M. - F. Lei, P. - S. Wu, T. - W. Huang, and H. Wang, “Design and analysis of a miniature W-band MMIC subharmonically pumped resistive mixer,” IEEE MTT-S, vol. 1, 2004, pp. 235-238.