| 研究生: |
陳虹伶 Hung-ling Chen |
|---|---|
| 論文名稱: |
高品質環形光子晶體共振腔之研究 High Quality Annular Photonic Crystal Resonator |
| 指導教授: |
欒丕綱
Pi-Gang Luan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 水平與垂直方向光侷限與優化 、光子晶體共振腔 、高品質 |
| 外文關鍵詞: | localization and optimization of the vertical, photonic crystal resonator, High quality factor |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光子晶體為週期排列的人工結構,可以使得某些頻段的光無法在結構中傳
遞,而可進行一些光學元件上的設計與應用。光子晶體共振腔為一項重要的發
展領域,能應用在雷射與單光子光源發射器元件,其目標為製作出高Q質,及
小體積的結構。本研究使用一維光子晶體,模擬其中光學特性,再將其彎曲形
成環型光子晶體的共振腔。應用某些頻段的光不可傳遞的特性,可使得光可以
被侷限在共振腔中。本論文分別進行垂直方向與水平方向光侷限的結構探討,
並進行優化模擬,而達到高Q質的要求,使光不易散失出共振腔。
我們使用Comsol模擬軟體,其模擬結果在水平方向可達極佳的光侷限結
果,水平方向Q值最高可以達到5*10^8,在垂直方向幾乎沒有光漏出去,此共
振腔的直徑只有16.6μm,光波長為1.2μm。
Photonic crystals (PCs) are periodic dielectric or metal-dielectric structures exhibiting photonic band gaps (PBG). An electromagnetic wave cannot propagate in a PC if its frequency is located in a PBG of the PC. Based on this effect, many useful photonic elements can be designed, such as photonic crystal waveguides (PCWs) and photonic crystal cavities (PCCs).
Research concerning PCCs makes important progresses recently. These new achievements can be utilized to design photonic crystal semiconductor lasers and
single-photon source components. The goal is to design cavities having high-quality factor (Q factor) and small structure sizes. In this study, we design high Q cavities of
one-dimensional PCs (1D PCs). We calculated the band structures of these 1D PCs and simulated their optical properties such as transmission rates, and then bent them
to form the annular photonic crystal cavities (APCCs), which are the candidates of the desired high-Q cavities for confining light. We discuss and analyze how to achieve the high-Q requirements through reducing the vertical and horizontal leakage of energy. By examining a lot of candidates having different refractive index/layer-thickness distributions, we found systematic ways to select the desired
high-Q structures. All the simulations of field patterns in this thesis are implemented by using
Comsol simulation software. The maximum Q value in the horizontal plane is found to be 8*10^5, and the vertical leakage of this cavity is very small. The diameter of this
cavity is 16.6 μm, and the working wavelength is 1.2 μm.
[1] P. Vukosic et al., "Quantified interference and diffraction in single Morpho butterfly scales," Proc. Roy. Soc: Bio, 266, 1403 (1999).
[2] J. Zi et al., "Coloration strategies in peacock feathers," Proc. Nat. Acad. Sci. USA, 100, 12576 (2003).
[3] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486 (1987).
[4] E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics
and Electronics," Phys. Rev. Lett.58, 2059 (1987).
[5] Chii-Chang Chen Pi-Gang Luan, Photonic Crystals. Wu-Nan culture enterprise (2005).
[6] R. D. Meade, and J. N. Winn J. D. Joannopoulos, Photonic Crystals. Princeton University Press (2008).
[7] http://en.wikipedia.org/wiki/Photonic_crystal.
[8] http://ab-initio.mit.edu/photons/tutorial/.
[9] E. M. Purcell, "Spontaneous emission probabilities at radio Frequencies," Phys. Rev. 69, 681 (1946).
[10] W. J. Kim, A. Stapleton, J.R. Cao, J. D. O’brien, P. D. Dapkus C.kim, "Quality factors in single-defect photonic crystal lasers with asymmetric cladding layers," J. Opt. Soc. Am. 19, 1777 (2002).
[11] J. K. Hwang, Y. H. Lee H. Y. Ryu, "The Smallest Possible Whispering-Gallery-Like Mode in the Square Lattice Photonic-Crystal," IEEE J. Quantum Electron. 39, 314 (2003).
[12] D. Kleppner, "Inhibited spontaneous emission," Phys. Rev. Lett. 47 , 233-236 (1981).
[13] http://nano.nchc.org.tw/photonic/bragg.html.
[14] J.N. Winn, Shanhui Fan, Chiping Chen, J. Michel, John D. Y. Fink, "A Dielectric Omnidirectional Reflector," Science 282, 1679 (1998).
[15] 曾彥均, "高品質因子與低模態體積光子晶體微共振腔之設計與製作,"
中央大學碩士論文 (2007).
[16] Amnon Yariv Jacob Scheuer, "Annular Bragg defect mode resonators," J. Opt. Soc. Am. B, 20, 2285 (2003).
[17] William M. J. Green, Guy A. DeRose, Amnon Yariv Jacob Scheuer, "Lasing from a circular Bragg nanocavity with an ultra-small modal volume," Appl. Phys. Lett. 86, 251101 (2005).
[18] Chun Jiang, Lin Luo, "Spherical Photonic Crystal Microcavity with Ultrahigh Quality Factor," IEEE, 1, 1-3 (2010).
[19] O. Painter, et al., "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[20] Yoshihiro Akahane, et al., "High-Q photonic nanocavity in a two dimensional photonic crystal," Nature 425, 944 (2003).
[21] T. Yoshie, et al., "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 201 (2005).
[22] K. Noazki et al., "Laser characteristics with ultimate-small modal volume
in photonic crystal salb point-shift nanolasers," Appl. Phys. Lett. 88, 211101 (2006).
[23] A. Shinya, E. Kuramochi et al T. Tanabe, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110-1 (2007).
[24] B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature mate. 4, 207-210 (2005).
[25] Takashi Asano, and Susumu Noda Yoshinori Tanaka, "Design of Photonic Crystal Nanocavity With Q-Factor of 10^9," J. Lightwave Technol. 26, 1532-1539 (2008).
[26] B. E. Little, "Ultracompact Si-SiO2 microring resonator optical dropping filter," Opt. Lett. 23, 1570–1572 (1998).
[27] E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett., 58 , 2059 (1987).
[28] C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: a Signal-Processing Approach, New York, Wiley (1999).