跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃凡修
Fan-Hsiu Huang
論文名稱: 10Gb/s 光纖通訊系統傳送/接收電路
The transmitter/receiver circuitssimulate and design for 10Gb/s fiber-optical communication system
指導教授: 詹益仁
Yi-Jen Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 93
中文關鍵詞: 光纖通訊系統時序電路光纖通訊量測系統雷射驅動器轉阻放大器限制放大器
外文關鍵詞: fiber-optical measurement system, sequential circuits, limiting amplifier, transimpedance amplifier, fiber-optical communication system, laser driver
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以III-V族半導體製程所製作的砷化鎵(GaAs)異質接面電晶體HBT(Heterojunction Bipolar Transistor)來設計與實現光纖通訊的相關電路,並提出設計方式、測試方法的流程;利用異質接面電晶體其高頻率、高速度及高驅動力等優點,來設計如光傳送雷射驅動器、光接收轉阻放大器、限制放大器等,完成傳送/接收端10 Gb/s傳輸率的模擬及製作。
    論文並提出10 Gb/s標準下所需的量測架構與量測方法,使能正確地測量光電元件和相關電路的特性,以便於進一步的探討在高速率下所面臨的問題。


    In this thesis, we design and realize the related circuits of fiber-optical communication using by GaAs HBT (Heterojunction Bipolar Transistor) from III-V semiconductor process. Moreover, it provides a process for designing and testing. To employ the strong point of HBT which have high frequency, high operation speed and high driving ability. According to these characteristics, we can simulate and complete circuits of 10 Gb/s transmitter and receiver easily. Such as Transimpedance amplifier, limiting amplifier and laser driver.
    In high speed transmission, some problems will be discovered and discussed. Therefore, understanding how to structure the measurement system and measure the correct characteristics of optical-electrical device needed.

    第一章 導論 1.1光通訊標準 6 1.2光通訊傳送/接收架構 12 1.3 論文動機與架構 13 第二章 量測系統原理與架構 2.1 數位信號 14 2.2 數位信號產生與偵錯 15 2.2.1非回零式信號產生 15 2.2.2眼圖 16 2.2.3錯誤偵錯 17 2.3 量測系統 20 2.3.1 光元件頻寬量測 22 2.3.1.1 光二極體暗電流與光電流量測 22 2.3.1.2 光二極體脈波量測 23 2.3.1.3 光二極體光電頻寬量測 24 2.3.1.4 雷射二極體量測 26 2.3.2 光電路量測 27 2.3.2.1 光二極體與轉阻放大器量測 27 2.3.2.2 限制放大器量測 29 2.3.2.3 多工/解多工器量測 30 第三章 雷射驅動器 3.1 半導體雷射 32 3.1.1 半導體雷射物理特性 33 3.1.2半導體雷射的物理考量 35 3.2 半導體雷射操作特性 36 3.3 雷射驅動器原理 40 3.4 模擬與量測結果 43 3.5 連結效應之探討 51 第四章 轉阻放大器與限制放大器 4.1 光二極體 53 4.1.1 光二極體物理特性 53 4.1.2 光二極體的物理考量 54 4.2 轉阻放大器原理 57 4.3 限制放大器原理 60 4.4 模擬與量測結果 62 4.4.1 阻轉放大器量測 62 4.4.2 限制放大器量測 68 4.5 Q因素與錯誤率探討 76 第五章 傳送/接收傳輸測試與時序電路 5.1 傳送/接收傳輸測試 81 5.2 時序電路 83 5.2.1 D型正反器 83 5.2.2 T型正反器 85 5.2.3 多工器 87 第六章 結論 88 參考資料 90 附錄 A. ITU-T 數位傳輸標準 94

    Book:
    [1] John Gowar, “Optical Communication Systems”, Prentice Hall, 1993
    [2]Behzad Razavi, “Design of Integrated Circuits for Optical
    Communication“, McGRAW Hill, 2003
    [3] Gerd Keiser, “Optical Fiber Communications”, McGRAW Hill, 2000
    [4]Djafar K. Mynbaev, Lowell L. Scheiner, “Fiber-Optic
    Communications Technology”, Prentice Hall, 2001
    [5]Dennis Derickson, “Fiber Optic Test and Measurement”,
    Hewlett-Packard Professional Books, Prentice Hall, 1998
    Application Note:
    [6] “DWDM Performance and Conformance Testing Primer”, Application Note of Tektronix, 2001
    [7] “A Brief Introduction to Jitter in Optical Receivers”, Application Note of MAXIM, 2000
    [8] “Jitter in Digital Communication System Part.1 and Part.2”, Application Note of MAXIM, 2001
    [9] “Accurately Estimating Optical Receiver Sensitivity”, Application Note of MAXIM, 2001
    [10] “NRZ Bandwidth HF-Cutoff v.s. SNR”, Application Note of
    MAXIM, 2001
    Laser Driver:
    [11] Rodney S. Tucker, “High Speed Modulation of Semiconductor Lasers”, Journal of Lightwave Technology, vol.LT-3 NO.6, pp. 1180~1192, Dec. 1985
    [12] Richard A. Linke, “Modulation Induced Transient Chirping in Single Frequency Lasers”, IEEE Journal of Quantum Electronic, vol.QE-21 NO.6, pp. 593~597, Jun. 1985
    [13] F. Delpiano, R. Paoletti, P. Audagnotto and M. Puleo, “High Frequency Modeling and Characterization of High Performance DFB Laser Modules”, IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part B, vol.17 NO.3, pp. 412~417, Aug. 1994
    [14] K.C. Sum, N.J. Gomes, “Microwave optoelectronic modeling approaches for semiconductor lasers”, IEE Proc. Optoelectron, vol.145 NO.3, pp. 141~146, Jun. 1998
    [15] Jesper Riish?j, “2.5Gb/s Laser Driver GaAs IC”, Journal of Lightwave Technology, vol.11 NO.7, pp. 1139~1146, Jul. 1993
    [16] H. M. Rein, R. Schmid, P. Weger, T. Smith, T. Herzog and R. Lachner, “A versatile Si-Bipolar Driver Circuit with High Output Voltage Swing for External and Direct Laser Modulation in 10Gb/s Optical-Fiber Links”, IEEE JSSC vol.29 NO.9, pp. 1014~1021, Sep. 1994
    [17] M. Menouni, E. Wawrzynkowski, S. Vuye, P. Desrousseaux, P. Launay and J. Dangla, ”14Gb/s digital optical transmitter module using GaAs HBTs and DFB laser”, Electronics Letters, vol.32 NO.3, pp. 231~233, Feb. 1996
    [18] T.V. Nguyen, F. Bosch, “10Gb/s AlGaAs/GaAs HBT Driver IC for Lasers or Lightwave Modulators”, Electronics Letters, vol.27 NO.20, pp. 1827~1829, Sep 1991
    [19] “Interfacing Maxim Laser Drivers with Laser Diodes”, Application Note of MAXIM, 2000
    System:
    [20] H. M. Rein, M. MÖllor, “Design Considerations for Very-High-Speed Si-Bipolar IC’s Operating up to 50Gb/s”, IEEE JSSC, vol.31 NO.8, pp. 1076~1089, Aug. 1996
    [21] Hans Martin Rein, “Multi-Gigabit Per-Second Silicon Bipolar IC’s for Future Optical-Fiber Transmission Systems”, IEEE JSSC, vol.23 NO.3, pp. 664~675, June 1988
    [22] L. Ingmar Andersson, P. Thomas Lewin, Michael D. Reed, Sylvia M. Planer, Sam L. Sundaram, ”Silicon Bipolar Chipset for SONET/SDH 10Gb/s Fiber-Optic Communication Links”, IEEE JSSC, vol.30 NO.3, Mar. 1995
    Transimpedance Amplifier
    [23] “Optical Signal-to-Noise Ratio and the Q-Factor in Fiber-Optic Communication Systems”, Application Note of MAXIM, 2002
    [24] Norman Scheinberg, Robert J. Bayruns, Timothy M. Laverick, “Monolithic GaAs Transimpedance Amplifiers for Fiber-Optic Receivers”, IEEE JSSC, vol.26 NO.12, pp.1834~1839, Dec. 1991
    [25] Alexander Schild, Hans Martin Rein, Jens Müllrich, Lars Altenhain, Jürgen Blank and Karl SchrÖdinger, “High Gain SiGe Transimpedance Amplifier Array for a 12?10Gb/s Parallel Optical Fiber Link”, IEEE JSSC, vol.38 NO.1, pp.4~12, Jan. 2003
    [26] Hisao Shigematsu, Masaru Sato, Toshihide Suzuki, Tsuyoshi Takahashi, Kenji Imanishi, Naoki Hara, Hiroaki Ohnishi, and Yuu Watanabe, “A 49-GHz Preamplifier With a Transimpedance Gain
    of 52 dB Using InP HEMTs”, IEEE JSSC, vol.36 NO.9, pp.1309~1313, Sep.2001
    Limiting Amplifier
    [27] Wolfgang PÖhlmann, “A Silicon Bipolar Amplifier for 10Gb/s with 45dB Gain”, IEEE JSSC, vol.29 NO.5, pp.551~556, May 1994
    [28] G. Georgiou, P. Paschke, R. Kopf, R. Hamm, R. Ryan, A. Tate, J. Burn, C. Schulien and Y. K. Chen, “High Gain Limiting Amplifier for 10Gbps Lightwave Receivers”, 11th International Conference on Indium Phosphide and Related Materials, pp.71~74, May 1999
    [29] Yuriy M. Greshishchev, Peter Schvan, “A 60dB Gain, 55dB Dynamic Range, 10Gb/s Broad-Band SiGe HBT Limiting Amplifier”, IEEE JSSC, vol.34 NO.12, pp.1914~1920, Dec. 1999
    MUX/DeMUX
    [30] Kiyoshi Ishii, Haruhiko Ichino, Yoshiji Kobayashi, and Chikara, “High –Bit-Rate, High-Input-Sensitivity Decision Circuits Using Si Bipolar Technology”, IEEE JSSC, vol.29 NO.5, pp.546~550, May 1994
    [31] Haruhiko Ichino, Noboru Ishihara, Masao Suzuki, Shinsuke Konaka, “18GHz 1/8 Dynamic Frequency Divider Using Si Bipolar Technologies”, IEEE JSSC, vol.24 NO.6, pp.1723~1728, Dec 1989
    [32] Klaus Runge, Detlef Daniel, R. D. Standley, James L. Gimlett, Randall B. Nubling, Richard L. Pierson, Steve M. Beccue, Keh-Chung Wang, “AlGaAs/GaAs HBT IC’s for High-Speed Lightwave Transmission Systems”, IEEE JSSC, vol.27 NO.10, pp.1332~1341, Oct. 1992
    [33] Alfred Felder, Michael MÖller, Josef Popp, Josef BÖck and Hans Martin Rein, “46Gb/s DEMUX, 50Gb/s MUX, and 30GHz Static Frequency Divider in Silicon Bipolar Technology”, IEEE JSSC, vol.31 NO.4, Apr. 1996
    [34] Kenji Ishida, Hirotsugu Wakimoto, Kunio Yoshihara, Mitsuo Konno,Shoichi Shimizu, Yoshiaki Kitaura, Kenichi Tomita, Takashi Suzuki and Naotaka Uchitomi, “A 10GHz 8-b Multiplexer/Demultiplexer Chip Set for the SONET STS-192 System”, IEEE JSSC, vol.26 NO.12, pp.1936~1943, Dec. 1991

    QR CODE
    :::