跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭瑋汝
Wei-Ru Guo
論文名稱: 光陽極在可見光下進行醇類選擇性氧化的應用
Photoanode Assisted Visible-light-driven Selective Oxidation of Alcohol
指導教授: 李岱洲
Tai-Chou Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 83
中文關鍵詞: 光觸媒光電化學系統生質物太陽光─化學能轉換選擇性氧化反應
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光催生物質選擇性氧化的過程,利用了豐富的太陽光生產高經濟價值的產物,是一道節省能源並對環境友善的製程。我們嘗試開發吸收可見光的光陽極應用在醇類的選擇性氧化上,所選定的材料為BiVO4,本研究首先著重在改善BiVO4光陽極,探討了三種方法對光電流及穩定性提升的情形,第一個方法是預想透過鹼液熱處理合成Bi2O3/BiVO4 p-n junction,雖然沒有成功合出此結構,但在1.23 V vs. RHE下光電流仍提升了29%;第二個方法為裝載MnOx共觸媒,成功提升了低偏壓區的光電流,但高偏壓區的光電流卻出現被抑制的情形,代表共觸媒的裝載能夠促進反應動力學,但也存在界面的問題需要克服;第三個方法則是塗佈TiO2保護層,在1.23 V vs. RHE下光電流提升了15%,而TiO2/BiVO4的穩定性則比前述兩個方法為佳。我們也透過在未添加或添加犧牲試劑的電解液中量測IPCE,個別探討BVO4光陽極三個部份的效率值,分別為吸光效率(ηabs)、光生電子─電洞對分離效率(ηbulk)以及半導體/電解液界面電荷轉移效率(ηsurf)。


    The process of photocatalytically selective oxidation of biomass, which is eco-friendly and energy saving, harvests abundant sunlight to produce high value-added chemicals. We aim to develop a photoanode using BiVO4 as target material to absorb visible light in application of selective oxidation of alcohols. This study first focus on improving BiVO4 photoanode, and discuss three methods for improving photocurrent densities and stability. First, we attempt to fabricate Bi2O3/BiVO4 p-n junction through an alkaline thermal treatment. Although Bi2O3 phase wasn’t observed , the photocurrent densities still raised by 29% at 1.23 V vs. RHE compared with that of pristine BiVO4. Second, the enhancement of photocurrent densities in the low bias region was attained during loading MnOx cocatalyst on BiVO4 photoanode surface, but the photocurrent densities in the high bias region was suppressed. This result indicated that loading cocatalyst can promote the reaction kinetics, but charge recombination might happen between the interfaces. Last, coating crystalline TiO2 as a protection layer enhanced the photocurrent density by 15% at 1.23 V vs. RHE. And TiO2/BiVO4 photoanode dominated stability than aforementioned photoanodes. In addition, we calculated IPCE of BiVO4 photoanode with or without sacrificial reagent in electrolyte which is capable of measurement of absorption efficiency (ηabs), electron-hole separation efficiency (ηbulk) and semiconductor/electrolyte interface charge transfer efficiency (ηsurf) of BiVO4 photoanode, respectively.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章、 緒論 1 1-1 前言 1 1-2 光觸媒發展 3 1-3 研究動機 4 第二章、 文獻回顧 6 2-1 半導體光觸媒 6 2-1-1 半導體性質 6 2-1-2 半導體與電解液界面之平衡 8 2-2 光電化學分解水 10 2-3 光電效率 12 2-4 BiVO4光觸媒 13 2-4-1 BiVO4的基本性質 13 2-4-2 BiVO4的優缺點探討 15 2-4-3 BiVO4效率改進的方法 16 2-4-3-1 提升反應動力學 16 2-4-3-2 提升電子遷移率 17 2-5 光催選擇性氧化 18 第三章、 研究方法 21 3-1 實驗藥品 21 3-2 實驗儀器 23 3-3 實驗步驟 26 3-3-1 光陽極製備 26 3-3-1-1 BiVO4製備 26 3-3-1-2 BiVO4經鹼液熱處理 27 3-3-1-3 MnOx/BiVO4製備 27 3-3-1-4 TiO2/BiVO4製備 27 3-3-2 光電化學量測 28 3-3-3 醇類氧化 29 第四章、 結果與討論 30 4-1 BiVO4光陽極 30 4-1-1 基本性質分析 30 4-1-2 電化學分析 36 4-1-3 光電效率之探討 39 4-2 經鹼液熱處理之BiVO4 42 4-2-1 基本性質分析 42 4-2-2 電化學分析 44 4-3 MnOx/BiVO4光陽極 47 4-3-1 基本性質分析 47 4-3-2 電化學分析 48 4-4 TiO2/BiVO4光陽極 52 4-4-1 基本性質分析 52 4-4-2 電化學分析 53 4-5 醇類氧化 57 第五章、 結論 60 第六章、 未來展望 61 參考文獻 62 附錄 67

    1. K. Zweibel, J. Mason and V. Fthenakis, Scientific American, 2008, 298, 64-73.
    2. R. v. d. Krol and M. Grätzel, Photoelectrochemical Hydrogen Production, Springer New York Dordrecht Heidelberg London, 2012.
    3. S. Ward, AgroCycle ‘circular economy’ project aims to reduce or re-use agri-food waste. http://www.engineersjournal.ie/2016/08/09/ucd-engineers-lead-e8-million-agrocycle-circular-economy-project/.
    4. 陳明君, 生質材料發展概況與應用趨勢. https://www.materialsnet.com.tw/DocView.aspx?id=24686.
    5. 黃彥禎, 工業材料雜誌, 2018, 376.
    6. X. Chen, Z. Zhang, L. Chi, A. K. Nair, W. Shangguan and Z. Jiang, Nano-Micro Letters, 2016, 8, 1-12.
    7. C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang and J. Tang, Chemical Society Reviews, 2017, 46, 4645-4660.
    8. J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu and R. S. Varma, Chemical Reviews, 2017, 117, 1445-1514.
    9. M. Arjmand, Nitrogen-Doped Carbon Nanotube/Polymer Nanocomposites Towards Thermoelectric Applications, IntechOpen, 2016.
    10. K. Rajeshwar, in Encyclopedia of Electrochemistry, 2007.
    11. 吳季珍, 科學發展, 2015, 508, 28.
    12. 崔曉莉, 化學通報, 2017, 80, 1160.
    13. A. Fujishima and K. Honda, Nature, 1972, 238, 37.
    14. G. Wang, Y. Ling, H. Wang, L. Xihong and Y. Li, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 19, 35-51.
    15. Z. Chen, H. N. Dinh and E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, Springer New York Heidelberg Dordrecht London, 2013.
    16. J. H. Kim, J. W. Jang, H. J. Kang, G. Magesh, J. Y. Kim, J. H. Kim, J. Lee and J. S. Lee, Journal of Catalysis, 2014, 317, 126-134.
    17. D. K. Zhong, S. Choi and D. R. Gamelin, Journal of the American Chemical Society, 2011, 133, 18370-18377.
    18. J. H. Baek, B. J. Kim, G. S. Han, S. W. Hwang, D. R. Kim, I. S. Cho and H. S. Jung, ACS Applied Materials & Interfaces, 2017, 9, 1479-1487.
    19. A. Loiudice, J. K. Cooper, L. H. Hess, T. M. Mattox, I. D. Sharp and R. Buonsanti, Nano Letters, 2015, 15, 7347-7354.
    20. B.-Y. Cheng, J.-S. Yang, H.-W. Cho and J.-J. Wu, ACS Applied Materials & Interfaces, 2016, 8, 20032-20039.
    21. V. Nair, C. L. Perkins, Q. Lin and M. Law, Energy & Environmental Science, 2016, 9, 1412-1429.
    22. Y. Park, K. J. McDonald and K.-S. Choi, Chemical Society Reviews, 2013, 42, 2321-2337.
    23. A. Walsh, Y. Yan, M. N. Huda, M. M. Al-Jassim and S.-H. Wei, Chemistry of Materials, 2009, 21, 547-551.
    24. J. K. Cooper, S. Gul, F. M. Toma, L. Chen, Y.-S. Liu, J. Guo, J. W. Ager, J. Yano and I. D. Sharp, The Journal of Physical Chemistry C, 2015, 119, 2969-2974.
    25. S. Byun, G. Jung, S.-Y. Moon, B. Kim, J. Y. Park, S. Jeon, S.-W. Nam and B. Shin, Nano Energy, 2018, 43, 244-252.
    26. K. Tolod, S. Hernández and N. Russo, Catalysts, 2017, 7.
    27. H. L. Tan, R. Amal and Y. H. Ng, Journal of Materials Chemistry A, 2017, 5, 16498-16521.
    28. F. M. Toma, J. K. Cooper, V. Kunzelmann, M. T. McDowell, J. Yu, D. M. Larson, N. J. Borys, C. Abelyan, J. W. Beeman, K. M. Yu, J. Yang, L. Chen, M. R. Shaner, J. Spurgeon, F. A. Houle, K. A. Persson and I. D. Sharp, Nature Communications, 2016, 7, 12012.
    29. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao and X. Chen, Journal of Materials Chemistry A, 2015, 3, 2485-2534.
    30. S. Bai, W. Yin, L. Wang, Z. Li and Y. Xiong, RSC Advances, 2016, 6, 57446-57463.
    31. X. Shi, I. Y. Choi, K. Zhang, J. Kwon, D. Y. Kim, J. K. Lee, S. H. Oh, J. K. Kim and J. H. Park, Nature Communications, 2014, 5, 4775.
    32. S. S. Kalanur, I.-H. Yoo, J. Park and H. Seo, Journal of Materials Chemistry A, 2017, 5, 1455-1461.
    33. S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner and A. M. Herring, Energy & Environmental Science, 2011, 4, 5028-5034.
    34. Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita, T. Sugaya, T. Matsui, D. Fujita, M. Tosa, M. Kondo and T. Kitamori, Scientific Reports, 2015, 5, 11141.
    35. T. W. Kim and K.-S. Choi, Science, 2014, DOI: 10.1126/science.1246913.
    36. Y. Wu, J. Wang, Y. Huang, Y. Wei, Z. Sun, X. Zheng, C. Zhang, N. Zhou, L. Fan and J. Wu, Journal of Semiconductors, 2016, 37.
    37. G. Palmisano, E. Garcia-Lopez, G. Marci, V. Loddo, S. Yurdakal, V. Augugliaro and L. Palmisano, Chemical Communications, 2010, 46, 7074-7089.
    38. J. C. Colmenares and R. Luque, Chemical Society Reviews, 2014, 43, 765-778.
    39. R. J. Highet and W. C. Wildman, Journal of the American Chemical Society, 1955, 77, 4399-4401.
    40. G. Elmaci, D. Ozer and B. Zumreoglu-Karan, Catalysis Communications, 2017, 89, 56-59.
    41. Z. Wu, J. Wang, Z. Zhou and G. Zhao, J. Mater. Chem. A, 2017, 5, 12407-12415.
    42. J. A. Seabold and K.-S. Choi, Journal of the American Chemical Society, 2012, 134, 2186-2192.
    43. D. K. Lee and K.-S. Choi, Nature Energy, 2018, 3, 53-60.
    44. V.-I. Merupo, S. Velumani, K. Ordon, N. Errien, J. Szade and A.-H. Kassiba, CrystEngComm, 2015, 17, 3366-3375.
    45. C. Regmi, Y. K. Kshetri, T.-H. Kim, R. P. Pandey and S. W. Lee, Molecular Catalysis, 2017, 432, 220-231.
    46. M. V. Malashchonak, E. A. Streltsov, D. A. Kuliomin, A. I. Kulak and A. V. Mazanik, Materials Chemistry and Physics, 2017, 201, 189-193.
    47. X. Wan, F. Niu, J. Su and L. Guo, Physical Chemistry Chemical Physics, 2016, 18, 31803-31810.
    48. O. Monfort, L.-C. Pop, S. Sfaelou, T. Plecenik, T. Roch, V. Dracopoulos, E. Stathatos, G. Plesch and P. Lianos, Chemical Engineering Journal, 2016, 286, 91-97.
    49. S. Hernández, G. Gerardi, K. Bejtka, A. Fina and N. Russo, Applied Catalysis B: Environmental, 2016, 190, 66-74.
    50. Y. Ma, S. R. Pendlebury, A. Reynal, F. Le Formal and J. R. Durrant, Chemical Science, 2014, 5, 2964-2973.
    51. Y. Liang and J. Messinger, Physical Chemistry Chemical Physics, 2014, 16, 12014-12020.
    52. J. Jiang and A. Kucernak, Electrochimica Acta, 2002, 47, 2381-2386.
    53. B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger and I. Chorkendorff, The Journal of Physical Chemistry C, 2015, 119, 15019-15027.
    54. K. Kawamura, T. Yasuda, T. Hatanaka, K. Hamahiga, N. Matsuda, M. Ueshima and K. Nakai, Chemical Engineering Journal, 2016, 285, 49-56.

    QR CODE
    :::