跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉星輝
Hsing-Hui Yeh
論文名稱: 生物晶片之螢光光學檢測
指導教授: 楊宗勳
Tsung-Hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 93
語文別: 中文
論文頁數: 76
中文關鍵詞: 微光柵微透鏡微流道螢光生物晶片
外文關鍵詞: micrograting, biochip, fluorescence, microchannel, microlens
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,由於生物科技一日千里,並且搭配成熟的微系統加工技術,使得生物晶片的研究蔚為風潮。其中微流體晶片將實驗室中進行的一連串生化分析,整合至同一晶片中,相較於傳統實驗室,具有反應速度快,樣本及試劑使用量減少等不少優點,因此是未來生物晶片發展的重要方向之一。
    而目前在微流體晶片中,所使用的螢光檢測技術,其螢光染料的激發頻譜與放射頻譜通常會有部份重疊在一起,因此在使用濾光片將激發光濾去以增加訊雜比的同時,也會把部份的放射光濾掉,將使得檢測更困難。本文中針對此問題,提出一種新型的檢測架構,把微流道與微光學元件(包含微透鏡及微光柵)作一系統性的整合。
    初步以氦氖雷射以及綠光雷射進行測試,使用本生物晶片的架構,並且搭配CCD的檢測方式,可得到一個空間的頻譜訊號分佈。進一步再針對混合光譜的訊號進行分析,期望可以得到原先光譜的混合比例。


    目錄 論文摘要 i 目錄 ii 圖索引 iv 表索引 vi 第一章 緒論 1 1.1 前言 1 1.1.1 生物晶片之近況 2 1.1.2 微流體晶片之檢測方法 15 1.1.3 研究動機 16 1.2 論文架構 17 第二章 晶片架構設計 18 2.1繞射式透鏡的設計 20 2.2繞射式光柵的設計 26 2.3總結 31 第三章 元件製作 32 3.1 濕式蝕刻的製作方式 32 3.2 微流道的製作 34 3.3 繞射式透鏡的製作 40 3.4 繞射式光柵的製作 44 3.5 元件接合 47 3.6總結 50 第四章 量測結果與討論 51 4.1 蝕刻速率的量測 51 4.2 繞射式光柵的量測 53 4.3 頻譜訊號的量測 56 4.4混合訊號的量測 58 4.5總結 67 第五章 結論 68 參考文獻 70

    參考文獻
    [1] J. Craig Venter, “The Sequence of the Human Genome,” Science, vol. 291, pp. 1304-1351, 2001.
    [2] T. Strachan, Human Molecular Genetics, 3rd ed, 2004.
    [3] H. Lodish, Molecular Cell Biology, 5th ed, W.H. Freeman, New York, 2004.
    [4] K. K. Jain, “Biochips for Gene Spotting,” Science, vol. 294, pp. 621-623, 2001.
    [5] J. Khan, “Expression profiling in cancer using cDNA,” Electro -phoresis, vol. 20, pp. 223-229, 1999.
    [6] G. Macbeath, and S. L. Schreiber, “Printing Proteins as Microarrays for High-Throughput Function Determination,” Science, vol. 289, pp. 1760-1763, 2000.
    [7] D. Erickson, “Integrated microfluidic devices,” Analytica Chimica Acta, vol. 507, pp. 11-26, 2004.
    [8] A. Manz, “miniaturized total Chemical Analysis System: A Novel Concept for Chemical Sensing,” Sensors and Actuators, B1, 1990.
    [9] M. Schena, “Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray,” Science, vol. 270, pp. 467-470, 1995.
    [10] 張玉瓏, 生物技術, 新文京開發出版有限公司, 2003.
    [11] J. J. Chen, Genomics, vol. 51, pp. 313, 1998.
    [12] R. J. Lipshutz, “High density synthetic oligonucleotide arrays,” Nature genetics, vol. 21, pp. 20-24, 1999.
    [13] M. Schena, DNA Microarrays: A Practical Approach, Oxford University Press, Oxford, 1999.
    [14] A. Gorg, “The current stage of two dimensional electrophoresis with immobilized pH gradients,” Electrophoresis, vol. 21, pp. 1037-1053, 2000.
    [15] M. Koch, “The dynamic micropump driven with a screen printed PZT actuator,” Journal of Micromechanics and Microengineering, vol. 8, pp. 119-122, 1998.
    [16] A. Manz, “Micromachining a Miniaturized Capillary Electrophoresis -Based Chemical Analysis System on a Chip,” Science, vol. 261, pp. 895-897, 1993.
    [17] G. T. A. Kovacs, “Novel interconnection technologies for integrated microfluidic systems,” Sensors and Actuators A, vol. 77, pp. 57-65, 1999.
    [18] A. Manz, “Towards miniaturized electrophoresis and chemical analy -sis systems on silicon: an alternative to chemical sensors,” Sensors and Actuators B, vol. 10, pp. 107-116, 1993.
    [19] Z. H. Fan, and D. J. Harrison, “Micromachining of capillary electro -phoresis injectors and separators on glass chips and evaluation of flow at capillary intersections,” Anal. Chem., vol. 66, pp. 177-184, 1994.
    [20] Marten Stjernstrom, and Johan Roeraade, “Method for fabrication of microfluidic systems in glass,” J. Micromech. Microeng., vol. 8, pp. 33-38 , 1998.
    [21] H. Becker, K. Lowack, and A. Manz, “Planar quartz chips with sub -micron channels for two-dimensional capillary electrophoresis applications,” J. Micromech. Microeng., vol. 8, pp. 24-28, 1998.
    [22] H. Nakanishi, and T. Nishimoto, “Fabrication of quartz microchips with optical slit and development of a linear imaging UV detector for microchip electrophoresis systems,” Electrophoresis, vol. 22, pp. 230-234, 2001.
    [23] L. Martynova, and L. E. Locascio, “Fabrication of plastic Microfluid Channels by Imprinting Methods,” Anal. Chem., vol. 69, pp. 4783-4789, 1997.
    [24] D.C. Duffy, and J.C. McDonald, “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Anal. Chem. , vol. 70, pp. 4974-4984, 1998.
    [25] J.R. Anderson, and D.T. Chiu, “ Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping,” Anal. Chem., vol. 72, pp. 3158-3164, 2000.
    [26] G.S. Fiorini, “Disposable microfluidic devices: fabrication, func -tion, and application,” BioTechniques, vol. 38, pp. 429-446, 2005.
    [27] A. Cozma, and B. Puers, "Characterization of the electrostatic bonding of silicon and Pyrex glass," J. micromech. Microeng., vol. 5, pp. 98-102, 1995.
    [28] S.C. Jacobson, and A.W. Moore, "Fused quartz substrates for microchip electrophoresis," Anal. Chem., vol. 67, pp. 2059-2063, 1995.
    [29] W.H. Ko, J.T. Suminto, and G.J. Yeh, Bonding Techniques for Micro -sensors, Micromachining and Micropackaging of Transducers, Elsevier Science Publishing, New York, 1985.
    [30] 賴建芳,林裕城, ”微機電系統製程之接合技術,” 機械月刊,第25卷,第11期,314-321.
    [31] H. Nakanishi, and T. Nishimoto, “Condition optimization, relia -bility evaluation of SiO2-SiO2 HF bonding and its application for UV detection micro flow cell,” Sensors and Actuators A, vol. 83, pp. 136-141, 2000.
    [32] H. Nakanishi, and T. Nishimoto, “Studies on SiO2-SiO2 bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS,” Sensors and Actuators A, vol. 79, pp. 237-244, 2000.
    [33] D. Schmalzing, “DNA sequencing on Microfabricated Electrophoretic Devices ,” Anal. Chem., vol. 70, pp. 2303-2310, 1998.
    [34] A. T. Woolley, “Ultra-High-Speed DNA Sequencing Using Capillary Electrophoresis Chips,” Anal. Chem., vol. 67, pp. 3676-3680, 1995.
    [35] N. Chiem, “Microchip-Based Capillary Electrophoresis for Immuno -assays: Analysis of Monoclonal Antibodies and Theophylline,” Anal. Chem., vol. 69, pp. 373-378, 1997.
    [36] M. U. Kopp, “ Chemical Amplification: Continuous-Flow PCR on a Chip,” Science, vol. 280, pp. 1046-1048, 1998.
    [37] M.A. Burns, “An Integrated Nanoliter DNA Analysis Device ,” Science, vol. 282, pp. 484-487, 1998.
    [38] Y. Liu, “DNA Amplification and Hybridization Assays in Integrated Plastic Monolithic Devices ,” Anal. Chem., vol. 74, pp. 3063-3070, 2002.
    [39] Agilent 2100 Bioanalyzer, http://www.agilent.com
    [40] Der-chang Chen, “Palladium Film Decoupler for Amperometric Detec -tion in Electrophoresis Chips,” Anal. Chem., vol. 73, pp. 758-762, 2001.
    [41] C.S. Effenhauser, “Integrated Capillary Electrophoresis on Flexi -ble Silicone Microdevices: Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips,” Anal. Chem., vol. 69, pp. 3451-3457, 1997.
    [42] D.M. Pinto, “An enhanced microfluidic chip coupled to an electro -spray Qstar mass spectrometer for protein indentification,” Electrophoresis, vol. 21, pp. 181-190, 2000.
    [43] P.A. Walker, “Isotachophoretic Separations on a Microchip. Normal Raman Spectroscopy Detection,” Anal. Chem., vol. 70, pp. 3766-3769, 1998.
    [44] Z. Liang, “Microfabrication of a Planar Absorbance and Fluorescence Cell for Integrated Capillary Electrophoresis Devices,” Anal. Chem., vol. 68, pp. 1040-1046, 1996.
    [45] M. Bass, Handbook of optics Ⅱ, 2nd ed., McGraw-Hill, New York, 1995.
    [46] D.C. O’Shea, Diffractive Optics: design, fabrication, and test, SPIE Press, Bellingham, WA, 2003.
    [47] J.W. Goodman, Introduction to Fourier Optics, 2nd ed., McGraw-Hill, San Francisco, 1996.
    [48] S. Sinzinger, Microoptics, 2nd ed., Wiley-VCH, Weinheim, 2003.
    [49] H.P. Herzig, Micro-optics: element, system and applications, Taylor and Francis, London, 1997.
    [50] B. Kress, and P. Meyrueis, Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology, John Wiley and Sons, New York, 2000.
    [51] M.C. Hutley, Diffraction Gratings, London, Academic Press, 1982.
    [52] E.G. loewen, Diffraction Grating and Applications, Marcel Dekker, New York, 1997.
    [53] http://www1.amershambiosciences.com/aptrix/upp01077.nsf/Content/ taiwan_homepage
    [54] http://probes.invitrogen.com/handbook/boxes/0422.html
    [55] M. Madou, Fundamentals of Microfabrication, CRC Press, Boca Raton, 1997.

    QR CODE
    :::