| 研究生: |
鍾沛容 Pei-Jung Chung |
|---|---|
| 論文名稱: |
探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究 Study of the intercellular communication involving in BRAF inhibitor-induced tumorigenesis |
| 指導教授: |
馬念涵
Nian-Han Ma |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 系統生物與生物資訊研究所 Graduate Institute of Systems Biology and Bioinformatics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 黑色素瘤 、BRAF抑制劑 |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究
中文摘要
標靶藥物Vemurafenib (PLX4032)是小分子抑制劑,作為抑制BRAFV600E基因突變來治療黑色素瘤,晚期黑色素瘤患者使用PLX4032治療後,提升患者整體存活率,然而,在臨床上發現15%-30%的患者平均治療10週後產生良性或惡性皮膚腫瘤的第二癌症,大多發生皮膚性的鱗狀上皮細胞癌(cutaneous squamous cell carcinoma, cSCC)和角化棘皮瘤(keratoacanthoma, KA),目前BRAF抑制劑誘導第二癌症發展機制尚不清楚。因此我們研究想解析是否用PLX4032治療黑色素瘤會釋放訊息在細胞間,影響表皮細胞誘發腫瘤形成。我們利用PLX4032治療黑色素瘤細胞收集的條件培養基(conditioned-medium, CM )來進行實驗,實驗的結果觀察到表皮細胞經過條件培養基培養會促使細胞增生,透過上調表皮細胞MAPK / ERK信號路徑。先前研究發現,細胞外囊泡(extracellular vesicles, EVs)是奈米大小的膜狀結構,在腫瘤微環境中作為細胞間訊息傳遞,調控細胞基因表現和蛋白質功能的表達。接下來,我們想要解析PLX4032治療黑色素瘤細胞釋放出的EVs是否影響表皮細胞增生,因此我們先從條件培養基中分離出EVs,透過蛋白質分析、奈米顆粒追蹤分析和穿透式電子顯微鏡實驗證明EVs的物理性質及特徵,確定完全純化出EVs。並透過螢光顯微鏡觀察表皮細胞對EVs的攝取, 建立可以觀察及追蹤黑色素瘤細胞株釋放的EVs。以上結果得到,PLX4032誘發表皮細胞增生,可能受黑色素瘤釋放EVs在細胞間訊息傳遞的影響。
Study of the intercellular communication involving in BRAF inhibitor-induced tumorigenesis
Abstract
Vemurafenib (PLX4032) is a small molecule inhibitor of the V600E mutant form of BRAF gene used in the treatment of melanoma. The treatment of PLX4032 in metastatic melanoma with BRAF mutation ensures the clinical improvement of the cancer. However, previous studies showed that 15-30% of the patients with PLX4032 treatment developed secondary benign or malignant skin tumors after an average of ten weeks from start of treatment. Cutaneous squamous cell carcinoma (cSCC) and keratoacanthomas (KA) were the majority of skin tumors presenting in the patients. The mechanism of PLX4032-induced secondary tumor development is not well defined. We asked whether the intercellular communication, especially factors released from melanoma treated with PLX4032 affects epidermal cells to promote the formation of the secondary tumors. In this study, we utilized the conditioned medium (CM) collected from melanoma cells treated with PLX4032 to investigate our hypothesis. Our results found that cell proliferation and cell survival increased in epidermal cells with CM when compared with cells without CM. Interestingly, MAPK/ERK signaling pathway was enhanced in CM-treated cells. Recent studies showed that extracellular vesicles (EVs) have been described as the important mediators of cell-to-cell communication in tumor microenvironment and regulate various physiological and pathological processes of receiver cells. We further want to ask whether the EVs released from melanoma treated with PLX4032 can influence epidermal cells to promote the formation of the secondary tumors. Here, the physicochemical characterization of EVs were checked by western blot, nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM) to confirm that EVs were isolated successfully. Here, we established the stable melanoma cell lines for visualization and tracking of the released EVs, and the uptake of the EVs by the epidermal cells was observed by fluorescent microscopy. Our results indicated that PLX4032 treated melanoma cells may affect other normal cells in the tumor microenvironments survival through intercellular communication.
1. Mort, R.L., I.J. Jackson, and E.E. Patton, The melanocyte lineage in development and disease (vol 142, pg 620, 2015). Development, 2015. 142(7): p. 1387-1387.
2. Tsao, H., et al., Melanoma: from mutations to medicine. Genes & Development, 2012. 26(11): p. 1131-1155.
3. Klicks, J., et al., A novel spheroid-based co-culture model mimics loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced selection of ABCB5-expressing cells. BMC Cancer, 2019. 19(1): p. 402.
4. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2019. CA Cancer J Clin, 2019. 69(1): p. 7-34.
5. Hodis, E., et al., A landscape of driver mutations in melanoma. Cell, 2012. 150(2): p. 251-63.
6. Gandini, S., et al., Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur J Cancer, 2005. 41(14): p. 2040-59.
7. Thompson, J.F., R.A. Scolyer, and R.F. Kefford, Cutaneous melanoma. Lancet, 2005. 365(9460): p. 687-701.
8. Hodis, E., et al., A Landscape of Driver Mutations in Melanoma. Cell, 2012. 150(2): p. 251-263.
9. Huang, F.W., et al., Highly Recurrent TERT Promoter Mutations in Human Melanoma. Science, 2013. 339(6122): p. 957-959.
10. Forbes, S.A., et al., The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet, 2008. Chapter 10: p. Unit 10 11.
11. Sosman, J.A., et al., Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med, 2012. 366(8): p. 707-14.
12. Halaban, R., et al., PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res, 2010. 23(2): p. 190-200.
13. Heideman, D.A., et al., KRAS and BRAF mutation analysis in routine molecular diagnostics: comparison of three testing methods on formalin-fixed, paraffin-embedded tumor-derived DNA. J Mol Diagn, 2012. 14(3): p. 247-55.
14. Dossett, L.A., R.R. Kudchadkar, and J.S. Zager, BRAF and MEK inhibition in melanoma. Expert Opin Drug Saf, 2015. 14(4): p. 559-70.
15. Achkar, T. and A.A. Tarhini, The use of immunotherapy in the treatment of melanoma. Journal of Hematology & Oncology, 2017. 10.
16. Rock, R., et al., BRAF inhibitors promote intermediate BRAF(V600E) conformations and binary interactions with activated RAS. Sci Adv, 2019. 5(8): p. eaav8463.
17. Swaika, A., J.A. Crozier, and R.W. Joseph, Vemurafenib: an evidence-based review of its clinical utility in the treatment of metastatic melanoma. Drug Design Development and Therapy, 2014. 8: p. 775-787.
18. Joseph, E.W., et al., The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(33): p. 14903-14908.
19. Chapman, P.B., et al., Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med, 2011. 364(26): p. 2507-16.
20. Wagle, N., et al., Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol, 2011. 29(22): p. 3085-96.
21. Gencler, B. and M. Gonul, Cutaneous Side Effects of BRAF Inhibitors in Advanced Melanoma: Review of the Literature. Dermatol Res Pract, 2016. 2016: p. 5361569.
22. Adelmann, C.H., et al., Comparative profiles of BRAF inhibitors: the paradox index as a predictor of clinical toxicity. Oncotarget, 2016. 7(21): p. 30453-60.
23. Oberholzer, P.A., et al., RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J Clin Oncol, 2012. 30(3): p. 316-21.
24. Boussemart, L., et al., Prospective study of cutaneous side-effects associated with the BRAF inhibitor vemurafenib: a study of 42 patients. Ann Oncol, 2013. 24(6): p. 1691-7.
25. Su, F., et al., RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med, 2012. 366(3): p. 207-15.
26. Hatzivassiliou, G., et al., RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature, 2010. 464(7287): p. 431-5.
27. Jordan, E.J. and C.M. Kelly, Vemurafenib for the treatment of melanoma. Expert Opin Pharmacother, 2012. 13(17): p. 2533-43.
28. Nijenhuis, C.M., et al., Is combination therapy the next step to overcome resistance and reduce toxicities in melanoma? Cancer Treat Rev, 2013. 39(4): p. 305-12.
29. Su, F., et al., Resistance to selective BRAF inhibition can be mediated by modest upstream pathway activation. Cancer Res, 2012. 72(4): p. 969-78.
30. Rughani, M.G., A. Gupta, and M.R. Middleton, New treatment approaches in melanoma: current research and clinical prospects. Ther Adv Med Oncol, 2013. 5(1): p. 73-80.
31. Colombo, M., G. Raposo, and C. Thery, Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol, 2014. 30: p. 255-89.
32. Zhang, H.G. and W.E. Grizzle, Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol, 2014. 184(1): p. 28-41.
33. Enderle, D., et al., Characterization of RNA from Exosomes and Other Extracellular Vesicles Isolated by a Novel Spin Column-Based Method. PLoS One, 2015. 10(8): p. e0136133.
34. Nawaz, M., et al., The emerging role of extracellular vesicles as biomarkers for urogenital cancers. Nat Rev Urol, 2014. 11(12): p. 688-701.
35. Vader, P., et al., Extracellular vesicles for drug delivery. Adv Drug Deliv Rev, 2016. 106(Pt A): p. 148-156.
36. Lai, C.P., et al., Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun, 2015. 6: p. 7029.
37. Yao, Z., et al., RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling. Nat Med, 2019. 25(2): p. 284-291.
38. Wendler, F., et al., Extracellular vesicles swarm the cancer microenvironment: from tumor-stroma communication to drug intervention. Oncogene, 2017. 36(7): p. 877-884.
39. Andrade, L.N.S., et al., Extracellular Vesicles Shedding Promotes Melanoma Growth in Response to Chemotherapy. Sci Rep, 2019. 9(1): p. 14482.
40. Roh, M.R., et al., Low-concentration vemurafenib induces the proliferation and invasion of human HaCaT keratinocytes through mitogen-activated protein kinase pathway activation. J Dermatol, 2015. 42(9): p. 881-8.
41. Luke, J.J. and F.S. Hodi, Vemurafenib and BRAF inhibition: a new class of treatment for metastatic melanoma. Clin Cancer Res, 2012. 18(1): p. 9-14.
42. Zhang, C., et al., RAF inhibitors that evade paradoxical MAPK pathway activation. Nature, 2015. 526(7574): p. 583-6.
43. Tutuka, C.S.A., et al., PLX8394, a new generation BRAF inhibitor, selectively inhibits BRAF in colonic adenocarcinoma cells and prevents paradoxical MAPK pathway activation. Mol Cancer, 2017. 16(1): p. 112.
44. Gast, C.E., et al., Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv, 2018. 4(9): p. eaat7828.
45. Arozarena, I. and C. Wellbrock, Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat Rev Cancer, 2019. 19(7): p. 377-391.
46. Gagliardi, M., et al., Aldo-keto reductases protect metastatic melanoma from ER stress-independent ferroptosis. Cell Death Dis, 2019. 10(12): p. 902.
47. Catalano, M. and L. O'Driscoll, Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles, 2019. 9(1): p. 1703244.
48. Kavanagh, E.L., et al., Protein and chemotherapy profiling of extracellular vesicles harvested from therapeutic induced senescent triple negative breast cancer cells. Oncogenesis, 2017. 6(10): p. e388.
49. Becker, A., et al., Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. Cancer Cell, 2016. 30(6): p. 836-848.
50. Kodet, O., et al., Melanoma cells influence the differentiation pattern of human epidermal keratinocytes. Mol Cancer, 2015. 14: p. 1.
51. Sunkara, V., H.K. Woo, and Y.K. Cho, Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics. Analyst, 2016. 141(2): p. 371-81.
52. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 2013. 200(4): p. 373-83.
53. Chen, J., C. Hu, and P. Pan, Extracellular Vesicle MicroRNA Transfer in Lung Diseases. Front Physiol, 2017. 8: p. 1028.