跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂品瑩
Ping-Ying Lu
論文名稱: 以液液萃取法結合基質輔助雷射脫附游離飛行時間質譜儀檢測水樣中聚苯乙烯塑膠微粒
指導教授: 丁望賢
Wang-Hsien Ding
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 46
中文關鍵詞: 基質輔助雷射脫附游離飛行時間質譜儀液液萃取法塑膠微粒聚苯乙烯
外文關鍵詞: MALDI, Liquid-liquid extraction, Micro/nanoplastics, Polystyrene
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 塑膠產品的廣泛應用衍生出大量廢棄物,廢棄物的處理不當使得大量塑膠汙染物被排放到環境中,如今塑膠微粒對海洋的污染已經成為全球關注的議題,因其聚合物不易被分解的性質,長時間下易累積於環境中,再加上塑膠易吸附其他有機與重金屬汙染物,使其對生物體有著潛在的危害,而建立塑膠汙染物的檢測方法將能為我們追朔汙染源頭,利於進行整治與改善。
    現今針對塑膠微粒的標準檢測方法尚未定案,而目前普遍的檢測方法,如FT-IR、Raman等光譜技術常包括費工耗時的樣品純化步驟,因此本研究使用簡單的液液萃取法(Liquid-liquid extraction)和基質輔助雷射脫附游離飛行時間質譜技術(MALDI-TOF-MS),並選擇聚苯乙烯(Polystyrene,PS)塑膠微粒作為代表,探討此兩種快速、簡便的方法是否能優化現今塑膠微粒的檢測。


    Currently, microplastic particles have been concerned as a group of emerging contaminants in surface water and marine environment. In this study, we combined two simple and rapid tools—liquid-liquid extraction (LLE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF MS) in order to improve the time-consuming and laborious defects for microplastics particles detection, and polystyrene (PS) was used as the model microplastic particles.

    摘要 i Abstract iii 謝誌 v 目錄 vii 圖目錄 ix 表目錄 xi 第一章 前言 1 1-1 研究緣起 1 1-2 研究目標 1 第二章 文獻回顧 3 2-1 塑膠微粒/奈米塑膠微粒Micro/Nanoplastics 3 2-1-1 塑膠微粒和奈米塑膠微粒簡介 3 2-1-2 聚苯乙烯簡介 4 2-2 基質輔助雷射脫附游離飛行時間質譜儀 4 2-3 液液萃取法 6 第三章 實驗步驟與樣品分析 7 3-1 實驗藥品與設備 7 3-1-1 實驗藥品 7 3-1-1 儀器設備 8 3-2 實驗步驟 9 3-2-1 標準品配置 9 3-2-2 MALDI-TOF-MS設定 10 3-2-3 液液萃取步驟 10 3-3 樣品採集 10 第四章 結果與討論 13 4-1 待測物的分析 13 4-2 實驗設計Experimental Design 15 4-2-1 實驗設計流程 15 4-2-2 實驗設計3D曲面圖與ANOVA分析 16 4-2-3 殘差分布圖 20 4-2-4 最佳化結果 22 4-3 檢量線 24 4-4 偵測極限與定量極限 25 4-5 萃取步驟最佳化 26 4-5-1 萃取劑種類 26 4-5-2 萃取劑用量最佳化 27 4-6 真實樣品檢測 28 4-6-1 水樣性質 28 4-6-2 百花川水樣 28 4-6-3 南崁溪水樣 30 第五章 結論 31 第六章 參考文獻 33

    〔1〕Anger, P. M., von der Esch, E., Baumann, T., Elsner, M., Niessner, R., & Ivleva, N. P. (2018). Raman microspectroscopy as a tool for microplastic particle analysis. Trends in Analytical Chemistry, 109, 214-226.
    〔2〕Fournier, S. B., D'Errico, J. N., Adler, D. S., Kollontzi, S., Goedken, M. J., Fabris, L., Yurkow, E. J., & Stapleton, P. A. (2020). Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Particle and Fibre Toxicology, 17(1), 55.
    〔3〕Hanson, C. (2013). Recent Advances in Liquid-Liquid Extraction. Elsevier Science. https://books.google.com.tw/books?id=LXn9BAAAQBAJ
    〔4〕Hosseini, S., & Martinez-Chapa, S. O. (2017). Principles and Mechanism of MALDI-ToF-MS Analysis. In Fundamentals of MALDI-ToF-MS Analysis, pp. 1-19.
    〔5〕Hwang, J., Choi, D., Han, S., Jung, S. Y., Choi, J., & Hong, J. (2020). Potential toxicity of polystyrene microplastic particles. Scientific Reports, 10(1), 7391.
    〔6〕Kik, K., Bukowska, B., & Sicinska, P. (2020). Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environmental Pollution, 262, 114297.
    〔7〕Koelmans, A. A., Besseling, E., Foekema, E., Kooi, M., Mintenig, S., Ossendorp, B. C., Redondo-Hasselerharm, P. E., Verschoor, A., van Wezel, A. P., & Scheffer, M. (2017). Risks of Plastic Debris: Unravelling Fact, Opinion, Perception, and Belief. Environmental Science & Technology l, 51(20), 11513-11519.
    〔8〕Kwon, B. G., Koizumi, K., Chung, S. Y., Kodera, Y., Kim, J. O., & Saido, K. (2015). Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution. Journal of Hazardous Materials, 300, 359-367.
    〔9〕Li, W. C., Tse, H. F., & Fok, L. (2016). Plastic waste in the marine environment: A review of sources, occurrence and effects. Science of The Total Environment, 566-567, 333-349.
    〔10〕Liu, M., Lu, S., Chen, Y., Cao, C., Bigalke, M., & He, D. (2020). Analytical Methods for Microplastics in Environments: Current Advances and Challenges. In Springer International Publishing, pp. 3-24.
    〔11〕Lusher, A. (2015). Microplastics in the Marine Environment: Distribution, Interactions and Effects. In Springer International Publishing, pp. 245-307.
    〔12〕Plastics–the Facts 2022. (2022). https://plasticseurope.org/de/resources/market-data/
    〔13〕Rankin, K., & Mabury, S. A. (2015). Matrix normalized MALDI-TOF quantification of a fluorotelomer-based acrylate polymer. Environmental Science & Technology, 49(10), 6093-6101.
    〔14〕Shim, W. J., Hong, S. H., & Eo, S. E. (2017). Identification methods in microplastic analysis: a review. Analytical Methods, 9(9), 1384-1391.
    〔15〕Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., & Matsuo, T. (1988). Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2(8), 151-153.
    〔16〕Wu, P., Tang, Y., Cao, G., Li, J., Wang, S., Chang, X., Dang, M., Jin, H., Zheng, C., & Cai, Z. (2020). Determination of Environmental Micro(Nano)Plastics by Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry. Analytical Chemistry, 92(21), 14346-14356.

    QR CODE
    :::