跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃奕豪
Yi-hao Huang
論文名稱: 微型化數位全像顯微鏡
Miniature Holographic Microscope
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 100
語文別: 中文
論文頁數: 93
中文關鍵詞: 鈮酸鋰體積全像光學元件數位全像顯微鏡數位全像全像術微型化
外文關鍵詞: holography, digital holography, digital holographic microscope, volume holographic optical element, LiNbO3
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數位全像術係將傳統全像術之紀錄介質以電子式的感光元件來取代,並能以數值計算的方式來重建物體的波前。數位全像術之優勢在於能將光學平行處理的特點和電子元件結合,達到更為廣泛的應用。
    因此,本論文主要探討將數位全像顯微鏡架構微小化的方法。我們利用體積全像光學元件的特性,取代傳統分光鏡,以達到將數位全像顯微鏡的尺寸微小化。另外,當物體非常靠近感光元件時,我們提供了許多方法來取得高解晰度的還原影像,像是:球面波照射光、球面波參考光、線性內插法。最後,並以模擬和實驗來展示此微型化的結果。


    Digital holography is a technique replacing the conventional holographic recording media by digital sensors. It utilizes numerical methods to reconstruct the wave front of an object. Digital holography not only takes the advantage of the optical characteristic of parallel processing but also combining this advantage with electronic devices.
    This study devotes to minimize the size of digital holographic microscope. It is realized by using a volume holographic optical element to replace the conventional beam splitter. Multi calculation methods including spherical wave illumination, spherical wave reference and interpolation technique are proposed to achieve high resolution when the objects is very close to the image detector. The ideas have been demonstrated by both simulation and experiment.

    摘要 I ABSTRACT II 致謝 III 目錄圖索引 V 圖索引 VIII 表索引 XI 第一章 緒論 1 1.1 數位全像光學之發展 1 1.2 研究動機與挑戰 3 1.3 論文大綱與安排 4 第二章 原理 5 2.1 全像術 5 2.1-1 同軸式全像術 7 2.1-2 離軸式全像術 8 2.2 布拉格光柵 9 2.3 可作為體積全像光學元件材料之基本特性 11 2.4 RAYLEIGH-SOMMERFELD 繞射理論 13 2.5 四步相移數位全像術 20 2.6 WHITTAKER-SHANNON 取樣定理 22 第三章 數位全像之影像重建模擬 30 3.1 利用數位全像術還原影像的方法 30 3.2 以內插法提高系統解析度 36 3.3 系統解析度之模擬分析 39 3.3-1 物體更加縮小之模擬 45 3.3-2 以球面波當參考光提高系統解析度 47 3.4 縮小觀測物體至CCD距離之方法 52 3.5 光源同調性分析 56 3.6 真實架構之模擬分析 59 第四章 數位全像之影像重建實驗 64 4.1 簡介 64 4.2 感光高分子光學壓克力造成之波前像差分析 64 4.3 驗證數位全像之還原能力 69 4.4 以鈮酸鋰(LINBO3)晶體作為體積全像光學元件 75 第五章 結論與未來展望 85 參考文獻 87 中英文名詞對照表 91

    [1] G. Dennis, “A new microscopic principle,” Nature 161, 777-778 (1948).
    [2] Y. N. Denisyuk, “On the reflection of optical properties of an object in a wave field of light scattered by it.” Dokl. Akad. Nauk 144, 1275-1278 (1962).
    [3] E. N. Leith, and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123-1130 (1962).
    [4] J. Upatnieks and C. Leaonard, “Diffraction efficiency of bleached photographically recorded interference patterns,” Appl. Opt. 8, 85-89 (1969).
    [5] A. Graube, “Advances in bleaching methods for photographically recorded holograms,” Appl. Opt. 13, 2942-2946 (1974).
    [6] N. J. Phillips and D. Porter, “An advance in the processing of holograms,” J. Phys. E: Sci. Instrum. 9, 631 (1976).
    [7] S. A. Benton, “Hologram reconstructions with extended incoherent sources,” J. Opt. Soc. Am. 59, 1545 (1969).
    [8] J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
    [9] J. Cowley and D. J. Walker, “Reconstruction from in-line holograms by digital processing,” Ultramicroscopy 6, 71-76 (1981).
    [10] U. Schnars and W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994).
    [11] E. Cuche, P. Poscio ,and C. Depeursinge, “Optical tomography at the microscopic scale by means of a numerical,” Proc. SPIE 2927, 61 (1996).
    [12] T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221-1223 (1998).
    [13] U. Schnars, “Direct phase determination in hologram imterferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011-2015 (1994).
    [14] T. Kreis, W. Juptner, and J. Geldmacher, “Digital holography: methods and applications,” Proc. SPIE 3407, 167-177 (1998).
    [15] G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV-holography,” Opt. Laser Eng. 26, 199-219 (1997).
    [16] O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseinia and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417-1428 (2010).
    [17] D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yagliderea, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787-1792 (2010).
    [18] S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeaha and A. Ozcan, “Field-portable lensfree tomographic microscope,” Lab Chip 11, 2222-2230 (2011).
    [19] W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhartb, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276-1279 (2011).
    [20] A. Greenbaum, U. Sikoraa, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip 12, 1242-1245 (2012).
    [21] International Telecommunication Union, Market information and statistics, http://www.itu.int/ITU-D/ict/statistics/maps.html (2007).
    [22] A. Banjanovic, “Special Report: Towards universal global mobile phone coverage,” Euromonitor International (2009).
    [23] I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
    [24] I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001).
    [25] G. koren, F. Polack, D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” J. Opt. Soc. Am. A 10, 423-433 (1993).
    [26] D. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin removal in digital holography using diffuse illumination,” Opt. Lett. 34, 3610-3612 (2009).
    [27] E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000).
    [28] A. Yariv and P. Yeh, Optical wave in crystals, (Wiley, New York, 1984).
    [29] 蕭義男,以PQ為光吸收的感光高分子材料在全像光儲存上的製備與特性研究,國立交通大學材料科學與工程所碩士論文,中華民國八十九年。
    [30] 張博宇,PQ:PMMA高分子全像片之製作與全像儲存的研究,國立交通大學光電工程研究所碩士論文,中華民國九十八年。
    [31] J. Mumbru, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194, 103-108 (2001).
    [32] R. S. Weis and T. K. Gaylord, “Lithium Niobat: Summary of Physics Properties and Crystal Structure,” Appl. Phys. A 37, 191-203 (1985).
    [33] A. Sommerfeld, Optics, (Academic Press, New York, 1954).
    [34] J. W. Goodman, Introduction of Fourier Optics, 2nd ed., (McGrawHill, New York, 1996).
    [35] T. M. Kreis, “Frequency analysis of digital holography,” Opt. Eng. 41, 771-778 (2002).
    [36] W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree in-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181-11191 (2010).
    [37] G. Pedrini and S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427-432 (2001).
    [38] G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of lensless holographic imaging system,” Appl. Opt. 41, 4489-4496 (2002).
    [39] M. Born and E. Wolf, Principles of Optics, 5th ed., (Pergamon, Oxford, UK, 1975).
    [40] R. S. Quimby, Photonics and Lasers, (John Wiley & Sons. Inc., Hoboken, New Jersey, 2006).
    [41] W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A 98, 11301-11305 (2001).
    [42] M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. express 2, 2721-2730 (2011).
    [43] L. Xu, X. Peng, Z. Guo, J. Miao, A. Asundi, “Imaging analysis of digital holography,” Opt. Express 13, 2444-2452 (2005)
    [44] D. G. Abdelsalam, B. J. Baek, D. Kim, “Influence of the collimation of the reference wave in off-axis digital holography,” Optik 123, 1469-1473 (2011).

    QR CODE
    :::