跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭裕昇
Yu-Shen Hsiao
論文名稱: 雙足式氣壓缸機器人之設計與實現
The design and realized of cylinder-biped walking robot
指導教授: 王文俊
Wen June Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 54
中文關鍵詞: 機器人氣壓缸雙足
外文關鍵詞: biped, robot, cylinder
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是雙足式氣壓驅動機器人之設計與實現,在機器人的雙腳上各裝置兩根氣壓缸來驅動跨步以及抬腿的動作,另在平台上裝置滑台型氣壓缸進行左右移動的動作來做機器人重心的搖擺,使機器人可以抬腿、換步前進、並保持平衡之。主要是在探討使用氣壓缸來取代伺服馬達以解決伺服馬達過大的體積以及貧乏的扭力需克服氣壓缸先天的不可控制性以及不可定位性。使用FLEX EPF 10K10TC144 的FPGA 板作為控制中樞,撰寫VHDL 的控制指令,使得各氣壓缸精準搭配運作時程,讓機器人能流暢行走。氣壓缸驅動機器人可參考文獻極少,雙足式氣壓缸機器人更是一大挑戰,本論文裡雙足式氣壓缸機器人的材質、結構、動作流程、控制法則,完全自行設計製作,本作品的呈現,乃是氣壓缸驅動機器人台灣本土研究的第一步。


    The thesis is “The design and realized of cylinder-biped walkingrobot”. Set two standard cylinders at each lag to step, and set a slide
    cylinder on the flat-top to move the centre of gravity for keeping balance.
    So the biped robot can walk and keeping balance at the same time. Discussusing cylinder to displace server-motor on the biped robot to solve the huge habit and dearth torque of server-motor, and try to conquer the uncontrollable and un-orientation of cylinder.
    Using FLEX EPF 10K10TC144 FPGA board to make cylinders working smoothly and match with each cylinder. The constitution and
    control rule of cylinder-biped walking robot are all designed by myself.This is the first step of cylinder-biped walking robot research in Taiwan.

    第一章 序論…………………………………………………………..1 1.1 研究背景與動機………………………………………….1 1.2 研究目的……………………………………………...…..3 1.3 本文架構……………………………………………….....3 第二章 機構設計與硬體規格………………………………………..4 2.1 機器人之機構設計………………………………………4 2.2 硬體規格......................................................................... ..4 2.2.1 氣壓缸maj-16X25-10,maj-16X50-25.................... ..5 2.2.2 電磁氣壓閥4V130c-M5......................................... ..6 2.2.3 滑臺氣壓缸STM B16 X 125 ................................. ..8 2.2.4 壓力調節閥............................................................. ..9 2.2.5 ALTERA FLEX10K Emulation Board..................... ..9 2.2.6 控制電路………………………………………..…10 2.2.7 轉壓電路………………………………………..…10 2.2.8 電力來源…………………………………………..11 2.2.9 氣動力來源……………………………………..…12 第三章 機器人的模型架構分析……………………………………13 3.1 雙腿機構設計概念…………………...……………........14 3.2 偏移重心的構想……………….......................................16 3.3 重心偏移裝置…………………………………………...19 3.4 腳底板與腳踝處………………………….......................20 第四章 機器人控制系統設計....……………………………………22 4.1 ALTERA FPGA VHDL……………………………...…22 4.2 步態的規劃................................................................... ..24 4.3 FPGA 的步態訊號………………………………………25 4.4 實驗中所遇到的困難以及障礙排除............................ 27 4.4.1 左右重心的搖擺……………………………...……27 4.4.2 容易前後傾倒的問題............................................. 28 4.4.3 雙腿抬腳跨步易互相阻礙……………………..…31 4.4.4 動態穩定抑或靜態穩定………………………..…32 4.5 與以往相似機器人相異之處………………………….33 第五章 研究成果……………………………………………………34 5.1 訊號輸出量測…………………………………..……….34 5.2 重心的偏移……………………………………………...36 5.3 行走時重心的轉移……………………………………...37 第六章 結論與未來展望……………………………………………41 第七章 參考文獻………………………………………..42

    [1] Y. Kurematsu, S. Kitamura, and Y. Kondo, “Trajectory Planning and
    Control of a Biped Locomotive Robot-Simulation and Experiment,”
    Robotics and Manufacturing, pp.65-72, ASME Press, 1988.
    [2] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K.
    Tanie, “Planning Walking Patterns for a Biped Robot” IEEE Trans.
    Robot. Automat., vol. 17, no. 3, 2001.
    [3] J. H. Park, “ZMP Compensation by On-Line Trajectory Generation
    for Biped Robot”s, pp.960-965, Korea IEEE , 1999.
    [4] J. K. Hodgins and M. H. Raibert, “Adjusting step length for rough
    terrain locomotion,” IEEE Trans. Robot. Automat., vol. 7, pp.
    289–298, June 1991.
    [5] F. Gubina, H. Hemami, and R. B. McGhee, “On the dynamic stability
    of biped locomotion,” IEEE Trans. Bio-Med. Eng., vol. BME-21, no.
    2,pp. 102–108, 1974.
    [6] J. J. Craig, Introduction to Robotics, third edition, Pearson Prentice
    hall, 2005.
    [7] A. Haigh , Object-Oriented Analysis & Design. McGraw Hill ,2001.
    [8] P. Menzel, F. D’ Aluisio , 林文源 譯, 機器人的進化:人工智慧與
    機器人學的新世紀, 商周出版: 城邦文化發行, 2002.
    [9] Sias, F.R., Jr.; Zheng, Y.F. ”How many degrees-of-freedom does a
    biped need? “Intelligent Robots and Systems ''90. IROS ''90. IEEE
    International Workshop on 3-6 July 1990, pp.297 - 302 vol.1 Digital
    Object Identifier,1990.
    [10] Karel Capek''s R.U.R.之網站,
    http://cmp.felk.cvut.cz/projects/actipret/robot.html.
    [11] Delft University of Technology 之網站,
    http://mms.tudelft.nl/dbl/research/biped/Denise/.
    [12] Mcgill University Ambulatory Robotics LAB 之網站,
    http://www.cim.mc.
    [13] ASIMO 之網站, http://world.honda.com/ASIMO/.
    [14] QRIO 之網站, http://www.sony.net/SonyInfo/QRIO/gill.ca/~arlweb/.
    [15]陳慶逸, 林柏辰 編, VHDL 數位電路實習與專題設計, 文魁資訊
    出版, 2003.

    QR CODE
    :::