| 研究生: |
蔡睿翰 Jui-han Tsai |
|---|---|
| 論文名稱: |
二氧化鈦基表面增強拉曼基板之製作與檢測 Fabrication and Characterizations of TiO2 Based Surface-Enhanced Raman Scattering Substrates |
| 指導教授: |
李勝偉
Sheng-Wei Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 二氧化鈦 、表面增強拉曼 |
| 外文關鍵詞: | TiO2, SERS |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用不同管徑之二氧化鈦奈米管陣列製作二氧化鈦基表面增強拉曼基板,研究內容主要可分為三大部分,第一部分為二氧化鈦奈米管陣列基板的製作,藉由控制陽極氧化之電壓與溶液組成,製作出管徑15nm~150nm之奈米管陣列。
第二部分為沉積金製作表面增強拉曼基板;在此比較了沉積金在不同管徑的基板上,及改變金的量所得到的SERS強度,並以RTA退火進行表面改質,比較退火溫度對SERS的影響。結果得知在50nm管徑的基板上沉積金,可得到最強的SERS強度;而沉積金的量對於SERS強度並無太大影響; RTA退火後,將金由薄膜改變為金奈米粒子散佈在基板上,增強了其表面電漿場,而強化了基板SERS強度為未退火的2倍以上。且在600℃時有最強的SERS強度。且我們所製作之基板可量測到濃度最低達10-8M。
第三部分改變沉積金屬為銀,比較沉積銀在不同管徑的基板上,所得到的SERS強度,再以RTA退火進行表面改質,比較退火溫度對SERS的影響。結果得知在75nm管徑的基板,可獲得最強的SERS強度,退火後同樣增強了SERS的強度至2倍以上。比較不同管徑之二氧化鈦奈米管基板在不同溫度下退火的結果,可得知適當的退火溫度可使原先SERS強度不強的管徑之基板,在退火後得到與75nm管徑之基板差不多的強度,而證明了適當的表面改質,可使原先SERS效應不強的基板,得到與SERS效應較強之基板同樣的強度。
In this study, we fabricated TiO2 based surface-enhanced Raman scattering substrates with TiO2 nanotube arrays. This thesis includes three parts; the first part was related to the fabrication of TiO2 nanotube array substrates. We have successfully fabricated TiO2 nanotube with diameter from 15 nm to 150 nm by controlling anodic voltage and the electrolyte composition.
The second part was related to the fabrication of Au-decorated TiO2-nanotube substrates. We compared the SERS activity of substrates with different tube diameters. We also used RTA to further improve the SERS activity. From the experimental results, we found that the TiO2 nanotube substrate with 50 nm tube diameter have the highest SERS performance. The highest SERS activity, which can effectively detect the concentration of R6G as low as to 10-8M, appeared with the annealing temperature of 600℃.
The third part was related to the fabrication of Ag-decorated TiO2-nanotube substrates. We compared the SERS activity of substrates with different tube diameters. We also employed RTA to enhance the SERS activity. From the experimental results, we found that the TiO2-nanotube substrate with the tube diameter of 75 nm have the highest SERS activity. The highest SERS activity, which can detect the concentration of R6G as low as to 10-8M, appeared at annealing temperature of 400℃. In addition, with the tube diameter of 26 nm and annealing temperature of 500 ℃, the SERS substrate can detect the concentration of R6G as low as to 10-9M.
[1] 林鼎晸(Lin, D. Z.)、朱仁佑(Chu, J. Y.)、張祐嘉(Chang, Y. C.)、汪天仁(Wang, T. J.)、蔡枝松(Tsai, C. S.)、葉吉田(Yeh, J. T.)、王俊凱(Wang, J. K.), 表面增強拉曼散射光譜的發展與應用, 工業材料, 261, 150-155(2008).
[2] C.V.Raman, A new type of secondary radiation, Natur, 121, 501-502(1928).
[3] Diana F. M. Willemse-Erix, Optical Fingerprinting in Bacterial Epidemiology Raman, Spectroscopy as a Real-Time Typing Method. Journal of clinical microbiology, 652–659(2009).
[4] Mario Krause, Localizing and Identifying Living Bacteria in an Abiotic Environment by a Combination of Raman and Fluorescence Microscopy. Anal. Chem. 80, 8568–8575(2008).
[5] M. Fleischmann, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters. 163-166(1974).
[6] Nie, Shuming; R. Emony, Steven Science, 275, (1997).
[7] Kneipp, Katrin; Wang, Y.; Kneipp, Harald; Perelman, Lev T.; Itzkan, Irving, R. Dasari, R. Dasari, Ramachandra; S. Feld, Michael Phys. Rev. Letters., 78, 9(1997).
[8] Wirth, M. J., Chemical analysis in small domains, Chemical Reviews 99 , 10(1999).
[9] Kneipp, K. et al., Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 14, R597(2002).
[10] D. L. Jeanmaire and R. P. Van Duyne, Surface raman spectroelectro chemistry:Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem.(1977).
[11] M. G. Albrecht and J. A. Creighton,Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc.,(1977).
[12] 吳民耀、劉威志, 表面電漿子理論與模擬,物理雙月刊,廿八卷二期(2006).
[13] 邱國斌、蔡定平,金屬表面電漿簡介,物理雙月刊, 廿八卷二期(2006).
[14] J¨org P. Kottmann and Olivier J.F. Martin, Plasmon resonant coupling in metallic nanowires, Opt. Express 8, 655(2001).
[15] J¨org P. Kottmann and Olivier J.F. Martin, Retardation-induced plasmon resonances in coupled nanoparticles, Opt. Lett. 26, 1096 (2001).
[16] M.-Y. Ng and W.-C. Liu, Journal of Korean Physics Society 47, S135 (2005).
[17] Patrick Hoyer, Formation of a Titanium Dioxide Nanotube Array, Langmuir,12,1411-1413(1996).
[18] Tomoko Kasuga, Masayoshi Hiramatsu, Akihiko Hoson, Toru Sekino, andKoichi Niihara, Formation of Titanium Oxide Nanotube, Langmuir, 14, 3160-3163(1997).
[19] 胡啟章,電化學原理與方法,初版,五南書局,台北市,民國九十一年。
[20] Chien-Chon Chen, Sheng-Jen Hsieh, Evaluation of Fluorine Ion Concentration in TiO2 NT Anodization Process, Journal of The Electrochemical Society,157,K125-K130(2010).
[21] G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes,Fabrication of tapered, conical-shaped titania nanotubes, J. Mater. Res.,18,2588-2593(2003).
[22] Jung Park, Sebastian Bauer, Klaus von der Mark, and Patrik Schmuki, Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate, NANOLETTERS, Vol. 7, No. 6 1686-1691(2007)
[23] 廖泰翔, 劉博滔, 王偉洪, 透明彩色, 奈米金鍍膜, Proceeding of Nanometer-Scale Technology and Materials Symposium (2010)
[24] J¨org P. Kottmann and Olivier J.F. Martin, Plasmon resonant coupling in metallic nanowires, 4 June 2001 / Vol. 8, No. 12 / OPTICS EXPRESS 663
[25] 陳敏瑋, 奈米金屬顆粒之表面電漿共振效應研究, 國立臺灣大學理學院物理學系博士論文, December, 2009
[26] Ren´e Kullock, William R. Hendren, Andreas Hille, Stefan Grafstr¨om, Paul R. Evans, Robert J. Pollard, Ron Atkinson, and Lukas M. Eng, Polarization conversion through collective surface plasmons in metallic nanorod arrays, 22 December 2008 / Vol. 16, No. 26 / OPTICS EXPRESS 21671
[27] Agata Roguska, AndrzejKudelski, MarcinPisarek, MagdalenaOpara, MariaJanik-Czachor, Raman investigations of SERS activity of Ag nanoclusters on a TiO2-nanotubes/Ti substrate, Vibrational Spectroscopy, xxx (2010) xxx–xxx
[28] 藍翊瑄, 銀奈米微粒吸收光譜分析, 國立中央大學物理研究所碩士論文, 中華民國九十三年六月廿十五日