跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李承鴻
Cheng-Hung Lee
論文名稱: 光子晶體中谷拓樸邊緣態之研究
The Research of the Valley Topological Edge States in Photonic Crystals
指導教授: 欒丕綱
Pi-Gang Luan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 66
中文關鍵詞: 拓樸邊緣態拓樸光子學
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要探討以蜂窩晶格組成之光子晶體的谷拓樸邊緣態 (the valley topological edge state),藉由將多個單元晶胞組成之超晶胞 (supercell),先使用平面波展開法計算其能帶結構與谷拓樸邊緣態,並以時域有限差分法 (FDTD) 模擬電磁波在材料中的傳播。此種拓樸邊緣態形成之原理是藉由打破蜂窩晶胞內兩圓柱之 C_3υ 對稱性使其約化為 C_3 對稱性。
      在光子晶體的模擬中,發現谷拓樸邊緣態的手徵性 (chirality) 並不優秀,但在特定的邊界其電磁波傳播仍然有一定的手徵性。在計算能帶的貝瑞曲率 (Berry curvature) 後發現其藉由兩種不同排列方式所構成的邊界,在第一布理淵區 (the first Brillouin zone) 中 〖K、K〗^' 點的局部陳數 (the local Chern number) 差異並非如理論所言等於 1,實際上差異是小於 1,這是導致其不良好手徵性之原因。
      最後我們藉由改變單元晶胞中介電質柱之形狀或性質以以使谷邊緣態的實現具有更多的靈活度。我們也研究了三角晶格 (triangular lattice) 與可果美晶格 (Kagome lattice) 中的谷拓樸邊緣態。它們的存在性也是藉由打破晶胞內兩圓柱分佈之 C_3υ 對稱性使其約化為 C_3 對稱性而實現的。


    In the thesis, we mainly discuss the valley topological edge states in photonic crystals which composed of honeycomb lattices of dielectric pillars. We use the supercell theory and the plane wave expansion method to calculate the band structure and valley topological edge states. Besides, we use the finite difference time domain method to simulate the propagation of electromagnetic waves in the material. The principle of the formation of this topological edge state is to reduce the C_3 symmetry of the distribution of the two cylinders in the honeycomb lattices to C_3υ symmetry.
    In the boundary formed by two different arrangements, according to the calculated Berry curvature of the photonic crystal energy band, it is found that the sum of the local Chern numbers belonging to the 〖K and K〗^' points in the first Brillouin zone of the two photonic crystals is not as what the theory expected to be equal to 1, but a value less than 1. We believe this is the reason for its poor chirality.
    Finally, we consider more general structures to realize the valley edge states by changing the shapes or properties of the dielectric pillars in more flexible ways in a unit cell. We also study the valley topological edge states in the triangular lattice and the Kagome lattice photonic crystals. The existence of the edge states in these structures can also be explained by the reduction to C_3 symmetry through breaking the C_3υ symmetry of the distribution of the two cylinders in a unit cell.

    摘要 I Abstract II 謝誌 III 目錄 IV 圖目錄 VI 第一章 緒論 1 1-1 拓樸絕緣體 1 1-2 拓樸光子晶體 4 第二章 研究理論 8 2-1 貝瑞相與陳數 8 2-2 陳數之數值計算 10 2-3 光子之有效哈密頓量 12 第三章 光子晶體模型與算法 14 3-1 光子晶體簡介 14 3-2 平面波展開法 15 3-2-1 傅立葉展開與倒晶格 15 3-2-2 向量波法計算頻帶結構 17 3-2-3 超晶胞之建構 19 3-3 光子晶體之貝瑞曲率與陳數 21 3-4 時域有限差分法 23 3-4-1電磁波遞迴關係式 23 3-4-2完美匹配層 25 第四章 數值結果與討論 27 4-1 蜂窩晶格之模型 27 4-2 谷拓樸光子晶體之分析 29 4-2-1 圓柱蜂窩晶格 29 4-2-2 圓柱蜂窩晶格之 FDTD 模擬 34 4-2-3 谷拓樸邊緣態之分析 37 4-3光子晶體柱與谷邊緣態之分析 46 第五章 結論與未來展望 51 5-1 結論 51 5-2 未來展望 51 參考文獻 52

    [1] Klitzing, K.v., G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Physical Review Letters, 45, 494 (1980)
    [2] Thouless, D.J., et al., Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Physical Review Letters, 49, 405 (1982)
    [3] Haldane, F.D.M., Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the" parity anomaly", Physical Review Letters, 61, 2015 (1988)
    [4] C.L. Kane, and E.J. Mele, Quantum Spin Hall Effect in Graphene, Physical Review Letters 95, 226801 (2005)
    [5] Z. Wang, Y. D. Chong, J. D. Joannopoulos & M. Soljačić, Observation of unidirectional backscattering-immune topological electromagnetic states, Nature, 461, 772 (2009)
    [6] Ching Hua Lee, Stefan Imhof, Christian Berger, Florian Bayer, Johannes Brehm, Laurens W. Molenkamp, Tobias Kiessling & Ronny Thomale, Topolectrical Circuits, Communications Physics, 1, 39 (2018)
    [7] Zhaoju Yang, Fei Gao, Xihang Shi, Xiao Lin, Zhen Gao, Yidong Chong, and Baile Zhang, Topological Acoustics, Physical Review Letters, 114, 114301 (2015)
    [8] Cheng He, Xu Ni, Hao Ge, Xiao-Chen Sun, Yan-Bin Chen, Ming-Hui Lu, Xiao-Ping Liu, and Yan-Feng Chen, Acoustic topological insulator and robust one-way sound transport, Nature Physics, 12, 1124 (2016)
    [9] Cserti, J. and G. Tichy, A simple model for the vibrational modes in honeycomb lattices, European Journal of Physics, 25, 723 (2004)
    [10] Yao-Ting Wang, Pi-Gang Luan and Shuang Zhang, Coriolis force induced topological order for classical mechanical vibrations, New Journal of Physics, 17, 073031 (2015)
    [11] B. Andrei Bernevig, Taylor L. Hughes, Shou-Cheng Zhang, Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Science, 314, 1757 (2006)
    [12] F. D. M. Haldane & S. Raghu, Possible Realization of Directional Optical Waveguides in Photonic Crystalswith Broken Time-Reversal Symmetry, Physical Review Letters, 100, 013904 (2008)
    [13] S. Raghu & F. D. M. Haldane, Analogs of quantum-Hall-effect edge states in photonic crystals ,Physical Review A, 78, 033834 (2008)
    [14] L.H. Wu and X. Hu, Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material, Physical Review Letters, 114, 223901 (2015)
    [15] Jian-Wen Dong, Xiao-Dong Chen Hanyu Zhu, Yuan Wang & Xiang Zhang, Valley photonic crystals for control of spin and topology, Nature Materials, 16, 298 (2017)
    [16] S.-s. Chern, Ann. Math 47, 85 (1964)
    [17] Mar´ıa Blanco de Paz, Chiara Devescovi, Geza Giedke, Juan Jos´e Saenz, Maia G. Vergniory, Barry Bradlyn, Dario Bercioux, and Aitzol Garc´ıa- Etxarri, Tutorial: Computing Topological Invariants in 2D Photonic Crystals, Adv. Quantum Technol., 3, 1900117 (2020)
    [18] Yu, R., et al., Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection, Physical Review B, 84, 075119 (2011)
    [19] Weng, H., et al., Quantum anomalous Hall effect and related topological electronic states, Advances in Physics, 64, 227 (2015)
    [20] Xiao-Dong Chen, Fu-Li Zhao, Min Chen, and Jian-Wen Dong, Valley-contrasting physics in all-dielectric photonic crystals:Orbital angular momentum and topological propagation, Physical Review B, 96, 020202(R) (2017)
    [21] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Physical Review Letters, 58, 2059 (1987).
    [22] S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters, 58, 2486 (1987).
    [23] Pi-Gang Luan and Zhen Ye, Two dimensional photonic crystals (2001)
    [24] Tzuhsuan Ma and Gennady Shvets, All-Si valley-Hall photonic topological insulator, New Journal of Physics, 18, 025012 (2016)
    [25] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Photonic Floquet topological insulators, Nature, 496, 196 (2013)
    [26] Youngkuk Kim, Keunsu Choi, and Jisoon Ihm, Topological domain walls and quantum valley Hall effects in silicene, Physical Review B, 89, 085429 (2014)
    [27] Kane, C.L. and E.J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect, Physical Review Letters, 95, 146802 (2005)
    [28] Di Xiao, Wang Yao, and Qian Niu, Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport, Physical Review Letters, 99, 236809 (2007)
    [29] Xin-Tao He、En-Tao Liang、Jia-Jun Yuan、Hao-Yang Qiu、Xiao-Dong Chen、Fu-Li Zhao1 and Jian-Wen Dong, A silicon-on-insulator slab for topological valley transport, Nature Communications, 10, 872 (2019)
    [30] 蔡雅雯、吳杰倫、欒丕綱, 從量子霍爾效應到拓樸光子學與拓樸聲子學, 科儀新知, 211期, 68 (2017).
    [31] 欒丕綱、陳啟昌, 光子晶體:從蝴蝶翅膀到奈米光子學 (第二版), 五南出版社 (2010)
    [32] Stephan Wong, Matthias Saba, Ortwin Hess, and Sang Soon Oh, Gapless unidirectional photonic transport using all-dielectric kagome lattices, Physical Review Research, 2, 012011(R) (2020)
    [33] You Wu, Xiaoyong Hu, and Qihuang Gong, Reconfigurable topological states in valley photonic crystals, Phyxical Review Materials, 2, 122201(R) (2018)
    [34] Yuting Yang, Hua Jiang & Zhi Hong Hang, Topological Valley Transport in Two-dimensional Honeycomb Photonic, Scientific Reports, 8, 1588 (2018)
    [35] Xiao-Dong Chen, Fu-Li Zhao, Min Chen, and Jian-Wen Dong, Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation, Physical Review B, 96, 020202(R) (2017)
    [36] R.Shankar, Topological Insulators -- A review, arXiv:1804.06471v1 (2018)
    [37] Wang Yao, Di Xiao, and Qian Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Physical Review B, 77, 235406 (2008)
    [38] Yuting Yang, Yun Fei Xu, Tao Xu, Hai-Xiao Wang, Jian-Hua Jiang, Xiao Hu, and Zhi Hong Hang, Visualization of a Unidirectional Electromagnetic Waveguide Using Topological Photonic Crystals Made of Dielectric Materials, Physical Review Letters, 120, 217401 (2018)
    [39] John R. Schaibley, Hongyi Yu, Genevieve Clark, Pasqual Rivera, Jason S. Ross, Kyle L. Seyler, Wang Yao & Xiaodong Xu, Valleytronics in 2D materials, Nature Reviews Materials, 1, 16055 (2016)
    [40] 馬雲鵬、姬金祖、張生俊、黃沛霖、劉戰合, 時域有限差分法(基於 MATLAB), 西安電子科技大學出版社 (2018)
    [41] Jin-Wu Jiang, Bing-Shen Wang and Harold S. Park, Topologically protected interface phonons in two-dimensional nanomaterials: hexagonal boron nitride and silicon carbide, Nanoscale, 10, 13913 (2018)

    QR CODE
    :::