| 研究生: |
團氏青翠 Doan Thi Thanh thuy |
|---|---|
| 論文名稱: | Estimations of aquifer properties by using cross-hole hydraulic and heat tomography surveys in a two- dimensional profile sandbox |
| 指導教授: |
倪春發
Chuen Fa-Ni |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 熱力和水力掃描調查 、沙箱實驗, 、水力傳導率 、熱傳導率 、VSAFT2 |
| 外文關鍵詞: | heat and hydraulic tomography surveys, sandbox experiment, hydraulic conductivity, thermal conductivity, VSAFT2 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
良好的地下水資源管理主要依靠對含水層水文地質特性的理解, 如含水層
水力傳導率( K) 等參數。一般而言,此類參數須透過不同水力試驗來推估。 常
見的含水層的水力傳導率值推估方法如抽水試驗及水力掃描方法, 這類方法有
其限制,例如因為數據解決方案和覆蓋範圍中存在許多不匹配的情況, 所求參
數會有非唯一性之問題。
近年來,使用分佈式溫度感測( DTS)技術進行的示踪劑測試開闢了一種替
代其他參數推估的方法。本研究的目的是利用溫度作為示蹤劑,結合水力掃描
方法之概念,以推估含水層中水文地質參數分布狀況。 在這項研究中, 利用沙
箱實驗比較溫度試驗和水力掃描測試所獲得的水力特性值,透過VSAFT2分析,
以評估含水層的參數分布推估狀況。
結果顯示,模擬水頭明顯高於注入口處的實測水頭值。 根據溫度試驗分佈,
沙箱中的溫度受低溫水的影響很大。此外,溫度數據的反推估含水層非均質性
有良好的辨識率,而水頭數據的反推估分辨率較低,推估結果中, 熱導率的相
關性高於水力導率的相關性, 分別為 0.84 和 0.97。 總而言之, 本研究結果為將
溫度示踪劑測試應用到實際案例中提供了良好的示範。
Groundwater resources management has substantially relied on an understanding
of hydrological properties. Important properties such as hydraulic conductivity (K) are
estimated with hydraulic head collected from hydraulic tests. Conventional approaches
to obtain the hydraulic conductivity value for aquifers rely on hydraulic tomography
survey with several drawbacks such as non-unique since many mismatches exist in the
data solution and coverage. In recent years, tracer test using Distributed Temperature
Sensing (DTS) technology opens up the approach of replacing additional test data with
the estimation of hydraulic properties. The purpose of this research is to test and
compare the hydraulic properties values measured by temperature and head in sandbox
experiment. In the study, VSAFT2 software is applied to the cross-hole hydraulic and
heat experiments for the estimation of aquifer properties. The results showed that the
simulated head was considerably higher than the measured head values at the injection
ports. Based on the temperature distribution, the study also indicates that the temperature
in the sandbox is significantly influenced by the low-temperature water. Furthermore,
the results showed that the inversion of temperature data resulted in a smoothed
reconstruction of aquifer heterogeneity while head data inversion leads to lower
resolution estimation. More details, the correlation from thermal conductivity is higher
than hydraulic conductivity are 0.84, and 0.97 respectively. To conclude, the result of
thermal conductivity presents benefits and potential to deploy the tracer test using DTS
into practical case.
Adetokunbo, R. P., “ERTh: Electrical Resistivity Monitoring of Heat Tracer to
Characterize Aquifer Heterogeneities”, Doctoral dissertation, State University of New
York at Buffalo, 2018.
Amos, S. U., “Cross sensitivity analysis of optical fibre-based sensing for high
pressure, high temperature measurement in oil and gas applications”, Doctoral
dissertation, 2020.
Anderson, M. P., “Heat transport in groundwater systems in Japan”, Journal of
Groundwater Hydrology, 52(4), 355-369, 2010.
V. F. Bense, T. Read, O. Bour, T. Le Borgne, T. Coleman, S. Krause, A. Chalari,
M. Mondanos, F. Ciocca, J. S. Selker, “Distributed Temperature Sensing as a downhole
tool in hydrogeology”, Water Resour. Res., 52(12), 9259-9273, 2016.
Geoffrey C. Bohling, James J. Butler Jr., Xiaoyong Zhan, Michael D. Knoll, “A
field assessment of the value of steady shape hydraulic tomography for characterization
of aquifer heterogeneities”, Water Resour. Res., 43(5), W05430, 2007.
Geoffrey C. Bohling and James J. Butler Jr., “Inherent limitations of hydraulic
tomography”, Groundwater, 48(6), 809-824, 2010.
J. J. Butler Jr., C. D. McElwee, G. C. Bohling, “Pumping tests in networks of
multilevel sampling wells: Methodology and implications for hydraulic tomography”,
Water Resour. Res., 35(11), 3553-3560, 1999.
Cardiff, M., Barrash, W., Kitanidis, P. K., Malama, B., Revil, A., Straface, S.,
Rizzo,55
E., “A potential‐based inversion of unconfined steady‐state hydraulic
tomography”, Groundwater, 47(2), 259-270, 2009.
M. Cardiff, W. Barrash, P. K. Kitanidis, “A field proof‐of‐concept of aquifer
imaging using 3‐D transient hydraulic tomography with modular, temporarily‐emplaced
equipment”, Water Resour. Res., 48(5), W05531, 2012.
Jim Constantz, “Heat as a tracer to determine streambed water exchanges”, Water
Resour. Res., 44(4), W00D10, 2008.
Freeze, R.A. and Cherry, J.A, Groundwater, Prentice Hall, 1979.
B. M. Freifeld, S. Finsterle, T. C. Onstott, P. Toole, L. M. Pratt, “Ground surface
temperature reconstructions: Using in situ estimates for thermal conductivity acquired
with a fiber‐optic distributed thermal perturbation sensor”, Geophys. Res. Lett., 35(14),
L14309, 2008.
Vance I. Fryer, Shuxing Dong, Yujiro Otsubo, George Albert Brown, Paul
Guilfoyle, “Monitoring of real-time temperature profiles across multizone reservoirs
during production and shut in periods using permanent fiber-optic distributed
temperature systems”, the SPE Asia Pacific Oil and Gas Conference and Exhibition,
Jakarta, Indonesia, 2005.
Danielle K. Hare, Martin A. Briggs, Donald O. Rosenberry, David F. Boutt, John
W. Lane, “A comparison of thermal infrared to fiber-optic distributed temperature
sensing for evaluation of groundwater discharge to surface water”, J. Hydrol, 530, 153-
166, 2015.56
Li Huang, Chunmiao Zheng, Jie Liu, “Application of distributed temperature
sensing to study groundwater-surface water interactions in the Heihe river basin”,
Hydrogeology and Engineering Geology, 39(2), 1-6, 2012.
Seok HwanHwang, Kue Bum Kim, Dawei Han, “Comparison of methods to
estimate areal means of short duration rainfalls in small catchments, using rain gauge
and radar data”, J. Hydrol, 588, 125084, 2020.
Illman, W. A., Liu, X., Craig, A., “Steady-state hydraulic tomography in a
laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale
validation of hydraulic conductivity tomograms”, J. Hydrol, 341(3-4), 222-234, 2007.
Illman, W. A., Zhu, J., Craig, A. J., Yin, D., “Comparison of aquifer
characterization approaches through steady-state groundwater model validation: A
controlled laboratory sandbox study”, Water Resour. Res., 46(4), W04502, 2010.
Illman, W. A., Berg, S. J., Zhao, Z., “Should hydraulic tomography data be
interpreted using geostatistical inverse modeling? A laboratory sandbox investigation”,
Water Resour. Res., 51(5), 3219-3237, 2015.
Kittilä, A., Jalali, M. R., Somogyvári, M., Evans, K. F., Saar, M. O., Kong, X. Z.,
“Characterization of the effects of hydraulic stimulation with tracer-based
temporal moment analysis and tomographic inversion”, Geothermics, 86, 101820, 2020.
Kragas, T. K., Williams, B. A., & Myers, G. A., “The optic oil field: deployment
and application of permanent in-well fiber optic sensing systems for production and
reservoir monitoring”, the SPE Asia Pacific Oil and Gas Conference and Exhibition,
Jakarta, Indonesia, 2005.57
Lauß, T., Oberpeilsteiner, S., Steiner, W., Nachbagauer, K., “The discrete adjoint
method for parameter identification in multibody system dynamics”, Multibody Syst.
Dyn., 42(4), 397-410, 2018.
Li, B., and Yeh, T. C., “Sensitivity and moment analyses of head in variably
saturated regimes”, Adv. Water Resour., 21(6), 477-485, 1998.
Li, W., A. Englert, O.A. Cirpka, J. Vanderborght, and H. Vereecken, “Twodimensional characterization of hydraulic heterogeneity by multiple pumping tests”,
Water Resour. Res., 43(4), W04433, 2007.
Liu, S., Yeh, T. C. J., & Gardiner, R., “Effectiveness of hydraulic tomography:
Sandbox experiments”, Water Resour. Res., 38(4), 1034, 2002.
Liu, Y., Wang, C., Luo, G., Ji, W., “Design and applications of drilling trajectory
measurement instrumentation in an ultra-deep borehole based on a fiber-optic gyro”
Geosci. Instrum. Methods Data Syst., 9, 79-104, 2020.
Mamer, E. A., Lowry, C. S., “Locating and quantifying spatially distributed
groundwater/surface water interactions using temperature signals with paired fiber‐optic
cables”, Water Resour. Res., 49(11), 7670-7680, 2013.
Mohammadi, Z., Illman, W. A., “Detection of karst conduit patterns via hydraulic
tomography: A synthetic inverse modeling study”, J. Hydrol, 572, 131-147, 2019.
Nath, D. K., Finley, D. B., Kaura, J. D., “Real-Time Fiber-Optic Distributed
Temperature Sensing (DTS)-New Applications in the Oilfield”, the SPE Asia Pacific
Oil and Gas Conference and Exhibition, Jakarta, Indonesia, 2005.58
Ni, C. F., Yeh, T. C. J., Chen, J. S., “Cost-effective hydraulic tomography surveys
for predicting flow and transport in heterogeneous aquifers”, Environ. Sci. Technol.,
43(10), 3720-3727, 2009.
Person, M., Raffensperger, J. P., Ge, S., Garven, G., “Basin‐scale hydrogeologic
modeling”, Rev. Geophys., 34(1), 61-87, 1996.
Rahmawati, N., “Space-time variogram for daily rainfall estimates using rain
gauges and satellite data in mountainous tropical Island of Bali, Indonesia (Preliminary
Study)”, J. Hydrol, 590, 125177, 2020.
Ren, J., Wang, X., Shen, Z., Zhao, J., Yang, J., Ye, M., Zhou, Y., Wang, Z., “Heat
tracer test in a riparian zone: laboratory experiments and numerical modeling”, J.
Hydrol, 563, 560-575, 2018.
Ryden, N., Park, C. B., “Fast simulated annealing inversion of surface waves on
pavement using phase-velocity spectra”, Geophysics, 71(4), R49-R58, 2006.
Salem, Z. E., Sakura, Y., Aslam, M. M., “The use of temperature, stable isotopes
and water quality to determine the pattern and spatial extent of groundwater flow:
Nagaoka area, Japan”, Hydrogeol. J., 12(5), 563-575, 2005.
Schwede, R. L., Li, W., Leven, C., Cirpka, O. A., “Three-dimensional
geostatistical inversion of synthetic tomographic pumping and heat-tracer tests in a
nested-cell setup”, Adv. Water Resour., 63, 77-90, 2014.
Sharmeen, R., Illman, W. A., Berg, S. J., Yeh, T. C. J., Park, Y. J., Sudicky, E.
A., Ando, K., “Transient hydraulic tomography in a fractured dolostone: Laboratory
rock block experiments”, Water Resour. Res., 48(10), W10532, 2012.59
Shook, G. M. , “Predicting thermal breakthrough in heterogeneous media from
tracer tests”, Geothermics, 30(6), 573-589, 2001
Somogyvári, M., P. Bayer, “Field validation of thermal tracer tomography for
reconstruction of aquifer heterogeneity”, Water Resour. Res., 53(6), 5070-5084, 2017.
Somogyvári, M., Bayer, P., R. Brauchler, “Travel-time-based thermal tracer
tomography”, Hydrol. Earth Syst. Sci., 20(5), 1885-1901, 2016
Szu, H., Hartley, R., “Fast simulated annealing”, Phys. Lett. A, 122(3-4), 157-
162, 1987.
Sykes, J. F., Wilson, J. L., Andrews, R. W., “Sensitivity analysis for steady state
groundwater flow using adjoint operators”, Water Resour. Res., 53(6), 359-371, 1985.
Therrien, R., McLaren, R., Sudicky, E., Panday, S., “Hydrogeosphere: A threedimensional numerical model describing fully-integrated subsurface and surface flow
and solute transport”, Groundwater Simulations Group, University of Waterloo,
Waterloo, ON N2L 3G1, Canada.
Vargas-Guzmán, J. A., Yeh, T. C. J., “The successive linear estimator: A revisit”,
Adv. Water Resour., 25(7), 773-781, 2002.
Xie, Y., Cook, P. G., Simmons, C. T., Zheng, C., “On the limits of heat as a tracer
to estimate reach‐scale river‐aquifer exchange flux”, Water Resour. Res., 51(9), 7401-
7416, 2015.
Zha, Y., Yeh, T. C. J., Illman, W. A., Onoe, H., Mok, C. M. W., Wen, J. C.,
Huang, S. Y., Wang, W., “Incorporating geologic information into hydraulic
tomography: A general framework based on geostatistical approach”, Water Resour.
Res., 53(4), 2850-2876, 2017.60
Zhu, J., Yeh, T. C. J., “Characterization of aquifer heterogeneity using transient
hydraulic tomography”, Water Resour. Res., 41(7), W07028, 2005.
Yeh, T. C. J., Liu, S., “Hydraulic tomography: Development of a new aquifer test
method”, Water Resour. Res., 36(8), 2095-2105, 2000.