| 研究生: |
黃高御 Gao-yu Huang |
|---|---|
| 論文名稱: |
利用UV/VIS/NIR吸收光譜建立CIGS太陽能薄膜電池之硫化鎘薄膜製程即時自動監測控制系統之研究 Using UV/VIS/NIR absorption spectra establish CdS thin film process real-time automatic monitoring and control system of CIGS thin-film solar cell |
| 指導教授: |
廖述良
Shu-liang Liaw |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 硫脲 、氨水 、醋酸鎘 、硫化鎘 、吸收光譜 |
| 外文關鍵詞: | thiourea, ammonia, cadmium acetate, CdS, absorption spectrum |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
CIGS太陽能薄膜電池之光電轉換效率與其硫化鎘(CdS)薄膜之厚薄有關,其薄膜之生成會受到反應物濃度與反應溶液之溫度及pH值之影響,然而其製程為密閉空間無法即時量測製程中各反應物質濃度之變化,是故,本研究利用UV/VIS/NIR吸收光譜原理,透過每五分鐘且連續掃描三小時之光譜資訊,分析各物質之濃度。由於硫脲、氨水及醋酸鎘之吸收波峰彼此會互相重疊造成其波長吸光度之增加,無法直接利用各物質之吸光係數分析得知其濃度,因此,本研究利用規劃求解之方法,透過物質重疊波段之主吸收波長及其主吸收波長前、後三個波長與吸光度,建立規劃求解各物質濃度之推估模式,但在硫化鎘生成反應過程中,氨水因其易揮發之特性,其濃度之變化除了反應生成硫化鎘所消耗之外,也包括氨水揮發所造成,因此須將氨水揮發造成之影響去除,且硫化鎘生成會造成各物質吸收波長之吸光度增加,因此,須將硫化鎘納入規劃求解之變數。然而推估模式所推估之硫化鎘生成量與實際之硫化鎘總生成量雖仍有一定之誤差,但相對於實廠製程使用較巨量之溶液,其推估模式於實廠之應用仍有一定之可行性,於實廠製程中,可將吸附於燒杯杯壁上之硫化鎘量視為實廠製程中吸附於基板上之硫化鎘量,得知吸附於基板上之硫化鎘量,其基板大小又為已知之固定尺寸,即可以得知吸附於基板上之硫化鎘薄膜之厚度,以提高製程產品之良率與效益,而過濾所得之硫化鎘量即為實廠硫化鎘薄膜製程結束後反應槽中殘餘之硫化鎘量,得知其殘餘量之資訊即可判斷製程能否繼續或是藉由添加反應物至反應槽中使硫化鎘生成反應持續進行,以提高製程之使用效率,減少原物料之損耗。
Thickness of the cadmium sulfide (CdS) thin films is relation with the photoelectric conversion efficiency of CIGS thin-film solar cell. The reactant’s concentration, reaction solution’s temperature and the pH value is influence CdS thin films grown, resulting in process stability is not high and product yield is major changes. In this study, according to UV/VIS/NIR absorption spectra of theory , analyze the concentration of each substance use by every five minutes and three hours of continuous scanning spectral information, due to the absorption peak of thiourea , ammonia and cadmium acetate will overlap each other, resulting in the absorption will be increase in absorbance wavelength , concentration of various substances ,who can’t directly to analysis by the coefficient. Therefore, in this study to establish program solver concentration of each substance estimation model through the absorption wavelength, include to the main absorption wavelength, three wavelengths who is in front of the main absorption wavelength and three wavelengths who is after the main absorption wavelength at the substance overlapping bands by using program solver method. But in the process of CdS formation reaction , ammonia have the characteristics of volatile, in the course of the reaction, the concentration of ammonia is changes by the characteristics of volatile and the consumed of reaction, therefore, estimate the ammonia concentration by using program solver have to deducted consumption of volatilization, and cadmium sulfide generation will cause the absorption be increase in each material’s absorbance wavelength, therefore, bring in CdS to program solver variables. However, the total generate cadmium sulfide of the model’s estimation still have the error with the actual amount of cadmium sulfide, but compared to the real plant processes use to the massive of the solution, the estimation model use to the real plant certain feasibility, in the manufacturing process of the real plant, the cadmium sulfide who on the glass wall of the beaker is regard to the amount of cadmium sulfide as real process plant on a substrate, then the fixed board size that can be learned on the thickness of CdS films adsorbed on the substrate and improve efficiency of the process products. Filtering the resulting amount of cadmium sulfide is regard to residual amount after the end of the reaction, it can determine whether to continue the process or be added to the reaction so that the reactants CdS formation reaction continues to improve the efficiency of the use of process reduce the loss of raw materials.
N.G Dhere, Waterhouse D, Sundaram K, Melendez O, Parikh N.R. and Patnaik B.K, "Solution-grown CdS layers for polycrystalline-thin-film solar cells." Photovoltaic Specialists Conference:pp,566-571(1993).
T Nakada, Nobukata O and Yoshlyukl T, "Superstrate-type CuInSe2 solar cells with chemically deposited CdS windowlayers." IEEE Photovoltaic Specialists Conference1:pp,95-98(1994).
Ozsan.M.E, J.D.R, M.S, D.Sivapathasundaram, P.L.M.Furlong, M.J, G.Goodlet, A.Shingleton, L.D, M.B and V.J.;."Optical and electrical characterization of chemically deposited cadmium sulfide thin films." Photovoltaic Energy Conversion 1: 327 - 330. (1994)
Paul O'Brien, Tahir Saeed "Deposition and characterization of cadmium sulfide thin films by chemical bath deposition " Journal of Crystal Growth 158( 4):497-504 (1996).
Bhattacharyya, D.; Carter, M.J. "Effect of substrate on the structural and optical properties of chemical-bath-deposited CdS films " Thin Solid Films 288(1-2):176-181.(1996).
Shih, S.N.Qiu, W.W. Lam, C.X. Qiu "ZnO/CdS/CuInSe2 photovoltaic cells fabricated using chemical bath deposited CdS buffer layer " Applied Surface Science 113-114: 764-767(1997).
Ahrenkiel, R.K.; Levi, D.H.; Johnston, S.; Song, W.; Mao, D.; Fischer, A. "Photoconductive lifetime of CdS used in thin-film solar cells." Photovoltaic Specialists Conference: 535 - 538.(1997).
J. G. Vazquez Luna, A. Z., O. Zelaya-Angel"Chemical CdS Thin-Film
Deposition Influenced by External Electric and Magnetic Fields." Crystal Research and Technology 34(8): 949-958.(1999).
Castro-Rodríguez.R, S.V, O.A.I, A Iribarren, J.Peña and C.F. "Strain gradients in polycrystalline CdS thin films." Thin Solid Films 373(1-2): 6-9(2000).
Herrero.J, G.M.T, G.C, D.J.M.Martínez, M.A.Chaparro, A.M. and B.R. "Photovoltaic windows by chemical bath deposition " Thin Solid Films 361-362( 1):28-33(2000).
D.S.Boyle, Bayer.A, Heinrich.M.R, Robbe.O.and O'Brien.P."Novel approach to the chemical bath deposition of chalcogenide semiconductors " Thin Solid Films 361-362(1): 150-154(2000).
Sasikala.G, P.Thilakan and C.Subramanian,"Modification in the chemical bath deposition apparatus, growth and characterization of CdS semiconducting thin films for photovoltaic applications " Solar Energy Materials and Solar Cells 62(3):275-293 (2000).
Kostoglou.M.A.N and Karabelas.A.J. "Modeling Thin Film CdS
Development in a Chemical Bath Deposition Process " Ind. Eng. Chem. Res. 39(9):3272-3283. (2000).
Kintunde.J.A."Effects of Deposition Parameters and Conditions on the Physical and Electro-Optical Properties of Buffer Solution Grown CdS Thin Films." physica status solidi (a) 179( 2): 363-371.(2000).
Castro.R, R.Oliva, A.I, Sosa, Victor, C.Briones and Peña.J.L."Effect of indium tin oxide substrate roughness on the morphology,structural and optical properties of CdS thin films " Applied Surface Science 161(3-4): 340-346(2000).
C.H.Huang, S.S.L, L.Rieth, A.Halani, M.L.Fisher, J.Song, T.J.Anderson and P.H.Holloway. "A comparative study of chemical-bath-deposited CdS, (Cd,Zn)S, ZnS, and In(OH)xSy buffer layer for CIGS-based solar cells." Photovoltaic Specialists Conference: 696 - 699.(2000)
I.O.Oladeji, L.Chow, J.R.Liu, W.K.Chu,A.E.Rakhshani and A.S.Al-Azab.
"Structure and morphology of chemical bath-deposited CdS films and clusters." Appl. Phys. 73(5 ): 631-636. (2001)
K.S.Ramaiah, R.D.P A.E. Hill, R.D.Tomlinson, and A.K.Bhatnagar. "Structural and optical investigations on CdS thin films grown by chemical bath technique " Materials Chemistry and Physics 68(1-3):22-30(2001)
Kostoglou.M, N.Andritsos and Karabelas.A.J, "Progress towards
modelling the CdS chemical bath deposition process"Thin Solid Films 387(1-2):115-117(2001)
Oumous.Hand H.Hadir."Optical and electrical properties of annealed CdS thin films obtained from a chemical solution"Thin Solid Films 386(1):87-90(2001)
Hamid.R.P and M.Rafat, “Simultaneous Determination of Nickel(II)and Copper(II) by Second-Derivative Spectrophotometric Method in Micellar Media”, Journal of the Chinese Chemical Society (2007).
J.Ghasemi, S.Ahmadi, and K.Torkedtanu, “Simultaneousdetermination of copper, nickel, cobalt and zinc using zincon as a metallochromic indicator with partial least squares”, Analytica Chimica Acta (2003).
Y.Liu, B.Y.Zhu and X.Zheng,“Determination the Composition of Cu(Ⅱ) and Selenoamino by UV-Spectrophotometry”,Chinese Journal of Spectroscopy Laboratory,22(2),(2005).
Olivier.T and C.Burgess,“UV-Visible Spectrophotometry of Water and Wastewater”, Elsevier Science (2007).
魏鍵名(2006),「聚氧化乙烯穩定化膠體硫化鎘奈米晶體之合成與其光學
性質之研究」,國立成功大學化學工程研究所碩士論文。
張振昌(2006),「化學水浴沉積法成長硫化鎘薄膜之研究」,國立中山大
學材料科學研究所碩士論文。
周立群、蔡火操、李焰(2000),「原子吸收分光光度計測定硫脲之探討」
李勇、為益民、王峰(2005),「影響近紅外光譜分析結果準確性的因素」,核農學報,第19卷,第3期, 236-240頁。
李姿儀(2009),「利用多波長UV/VIS吸收光譜建立廢水中COD與SS自動監測技術之可行性研究」,國立中央大學環境工程研究所碩士論文。
游佩蓉(2009),「利用UV/VIS/NIR吸收光譜同步量測水中SS、有機物及重金屬之研究」,國立中央大學環境工程研究所碩士論文。
廖憶華(2006),「以光學頻譜分析定性及定量廢水水質特性之研究」,國立中央大學環境工程研究所碩士論文。
徐彥翔(2010),「以化學水浴製備氧化鋅光電極薄膜之研究」,國立中央大學能源工程研究所碩士論文。
鄭禹祥(2007),「COD、SS及流量即時自動監測系統之發展與建立」,國立中央大學環境工程研究所碩士論文。
環境保護署,環境檢測方法-水中銀、鎘、鉻、銅、鐵、錳、鎳、鉛及鋅檢測 方法-火焰式原子吸收光譜法,NIEA 306.52A。