跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王菘郁
Song-Yu Wang
論文名稱: 氮化銦鎵奈米量子井的表面增益拉曼散射分析
Study of Surface-Enhanced Raman Scattering on Nano-structured InGaN Quantum wells
指導教授: 賴昆佑
Kun-Yu Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 66
中文關鍵詞: 氮化銦鎵磊晶表面增益拉曼散射量子井
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面電漿是一種電磁波,存在於金屬與介電質的介面,當表面電漿形成時,其電磁場的共振強度對周圍的折射率變化有極高的敏感度,我們可我們藉由量測電磁場的強度或波長變化,來判斷金屬表面的待測物濃度,此方法已廣泛應用在生物感測元件上。
    在本研究中,我們利用有機金屬化學氣相沉積法(Metal Organic Chemical Vapor Deposition, MOCVD)成長氮化銦鎵奈米量子井,再以其上的金屬奈米顆粒形成局部性的表面電漿效應,並透過R6G螢光分子所產生的拉曼訊號,來分析此奈米結構在生物感測上的應用潛力。
    氮化物半導體具有高折射率、高化學穩定性等優勢。本研究所提出的氮化銦鎵量子井,所產生的光子可作為一種增益介質,補償金屬吸收激發光所造成的能量損失,且金字塔型的奈米結構表面,能增加待測物的吸附面積,配合此獨特的奈米量子井結構,可有效增加表面增益拉曼散射(surface enhanced Raman scattering, SERS)的強度,可偵測最低達10-10M的R6G分子濃度,在單分子偵測上有令人期待的潛力。


    Surface plasmon is an electro-magnetic wave, formed at the interface between metal and dielectric. Since the intensity of surface plasmon polaritons (SPP) is extremely sensitive to the change of ambient refractive index, one can determine the concentration of analytes by measuring the shifts of intensity or wavelength of SPP. This method has been widely employed in biosensing technologies.
    In this study, nano-pyramidal InGaN quantum wells were grown by metal-organic chemical vapor deposition (MOCVD) on Si substrates, with the buffer layer made of ZnO nanorods. Au nanoparticles were then applied on the nanopyramidal surface to induce localized surface plasmon resonance. The Raman signals generated by Rhodamine 6G (R6G) fluorescent dye molecules were evaluated to investigate the biosensing performance of the nano-pyramidal quantum wells.
    For the applications in biosensing, nitride semiconductors enjoy the advantages of high refractive index, and high chemical stability. Compared to the planar surface, the nano-pyramidal quantum wells are expected to adsorbed more biomolecules because of the increased surface area. Moreover, InGaN quantum well can serve as the gain medium, pumping energy to compensate the ohmic loss in the metal nanoparticles. It is found that the nano-pyramidal quantum wells, together with the Au nanoparticles, are effective in boosting the intensities of surface-enhanced Raman scattering (SERS) signals generated by the R6G molecules.The minimum detectable R6G concentration is 10-10M, showing promising potentials for single molecule detection.

    目錄 論文摘要 V Abstract VI 誌謝 VII 圖目錄 X 表目錄 XIII 第一章、緒論 1 1.1前言 1 1.2表面增益拉曼散射的源起與發展 2 1.3表面增益拉曼散射於氮化物的應用 3 1.4氮化銦鎵量子井應用在表面增益拉曼散射的優勢 5 1.5研究動機與章節架構 7 第二章、實驗原理、方法與儀器 9 2.1表面電漿共振原理 9 2.2金屬奈米顆粒耦合表面電漿原理 14 2.3表面增益拉曼散射原理 17 2.4實驗儀器介紹 23 2.5以五三比調控氮化鎵的微米化表面 26 2.6磊晶結構及製程步驟 29 第三章、分析與討論 34 3-1量子井發光波長調整 34 3.2金屬奈米顆粒介電常數比較 36 3.3入射光波長對拉曼光譜的影響 38 3.4光致激發及拉曼散射的光譜分析 40 3.5 R6G量測分析及拉曼強度比較 42 第四章、結論與未來發展 47 4.1結論 47 4.2未來發展 48 參考文獻 49

    [1]林鼎晸,朱仁佑,“表面增強拉曼散射光譜的發展與應用",工業材料雜誌261, 150-155(2008)。
    [2]He Xiao-Guang(何晓光), Zhao De-Gang, Jiang De-Sheng. Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression. Chin. Phys. B 24, No.6, 067301(2015).
    [3] Thapa, R. et al. Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection. Appl. Phys. Lett. 100, 232109 (2012).
    [4]Dick, L.A. et al. Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss. J. Phys. Chem. B 106, No.4, 853-860(2002).
    [5] Bankowska, M. et al. Au–Cu Alloyed Plasmonic Layer on Nanostructured GaN for SERS Application. J. Phys. Chem. C 120, 1841-1846(2016).
    [6]Traci, R.J. et al. Nanosphere Lithography:  Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. J. Phys. Chem. B 104, 10549(2004).
    [7] Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag 4, 396 (1902).
    [8] Fano, U. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces. J. Opt. Soc. Am. 31, 213 (1941).
    [9]吳民耀,劉威志,“表面電漿子理論與模擬,”物理雙月刊 28, 486-496(2006)。
    [10]邱國斌,蔡定平,“金屬表面簡介,”物理雙月刊 28, 486-496(2006)。
    [11]P. K. Jain and M. A. El-Sayed. Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing.Nano Letters 8, 4347 (2008).
    [12]Jain, P.K., El-Sayed, M.A. Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Lett. 8, 4347(2008).
    [13]Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C. The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 107, 668(2003).
    [14]Kreibig, U., Vollmer, M. Optical Properties of Metal Clusters. Vol. 25. (Springer, Berlin, 1995.)
    [15]V. G. Kravets et al. Cascaded Optical Field Enhancement in Composite Plasmonic Nanostructures. Nano Lett. 10, 874(2008).
    [16] Garcia Vidal, F.J., Pendry, J.B. Collective Theory for Surface Enhanced Raman Scattering. Phys. Rev. Lett 77,1163-1166(1993).
    [17]陳瑤真,“表面增強拉曼散射光譜應用於生物單分子偵測,” 國立交通大學,碩士論文,民國九十三年。
    [18]Jiang, J.D., Burstein, E. & Kobayashi, H. Resonant raman-scattering by crystal-violet molecules adsorbed on a smooth gold surface - Evidence for a charge-transfer excitation. Phys. Rev. Lett. 57, 1793–1796 (1986).
    [19]Juan, F.W. et al. The role of charge-transfer states of the metal-adsorbatecomplex in surface-enhanced Raman scattering. J. Chem. Phys, 112, 7669(2000).
    [20] Campion, A. & Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998)
    [21]Catarina, M., Rahul, T., Richrd, O., Sumeet, M. Raman spectroscopy and coherent antiStokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. J. R. Soc. Interface 13(2016).
    [22]Seshan, K., Handbook Of Thin Film Deposition Processes And Techniques(Noyes Publications/William Andrew Pub.,2002)
    [23] 網路資料: Physics and Astronomy, Surface Enhanced Raman Spectroscopy Introduction. 取自https://newton.ex.ac.uk/research/biomedical-old/optics/sers.html
    [24]Zhu, F.Y. et al. 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotech. Vol. 25, No. 8(2014).
    [25] Kum, D., Byun, D. The effect of substrate surface roughness on GaN growth using MOCVD process. J. Electron. Mater.Vol. 26, No. 10(1997)
    [26]Yang, T. et al. Control of Initial Nucleation by Reducing the V/III Ratio during the Early Stages of GaN Growth. Phys. Status Solidi A. 180, 45(2000)
    [27] Cheng, Z. et al. High-Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications. Adv. Mater.1605177(2017)
    [28] McPeak, K.M. et al. Plasmonic films can easily be better: Rules and recipes. ACS., 326-333(2015)
    [29] Mark, W.K., et al. Aluminum for Plasmonic. ACS Nano. Vol. 8, 834-840(2014)
    [30] Bosi, M. et al. Compositional and optical uniformity of InGaN layers deposited on (0001) sapphire by metal–organic vapour phase epitaxy. Semicond. Sci. Technol.Vol. 19, No.2, 9932–9939(2003)
    [31] Strommen, D. P., Nakamoto, K. Resonance raman spectroscopy., J. Chem. Educ., 54
    (1977)
    [32] Dieringer, J.A. et al. Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G Molecule. J. Am. Chem. Soc. 131, 849–854(2009)
    [33] Le Ru, E.C. et al. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C. 111, 13794-13803(2007)

    QR CODE
    :::