跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許大鈞
Ta-Chun Hsu
論文名稱: 應用案例式推論與基因演算法於信用評等決策輔助系統
指導教授: 周世傑
Shih-Chieh Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理學系
Department of Information Management
畢業學年度: 90
語文別: 中文
論文頁數: 59
中文關鍵詞: 案例式推論法基因演算法k最臨近理論個人信用評等
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來本國金融機構信用快速擴充,而金融機構的營收重於放款業務,但提高放款業務比例並不能代表銀行利潤的增加,放款的風險為逾期放款,必須有好的放款品質,方不致使逾放比率增加,因此有效控管信用放款的質與量,成為目前各金融機構經營的首重目標。為減少逾放比率、提高放款量、爭取審核時間,利用知識管理之知識再使用(reuse)的審核機制是必需的,客觀科學化的評分方法更能使徵信資料得到迅速的整理與分析,以利信用放款的決策。
    本研究以國內銀行業申貸案例為研究對象,採用案例式推論法(Case Based Reasoning)結合基因演算法(Genetic Algorithm)發展信用評等決策輔助系統,探討國內銀行業者使用之個人信用評分表之表列變數,並將歷史資料分為訓練及測試案例,支援本系統學習出最佳的案例屬性權重,應用在案例的擷取過程,以擷取新申貸案例的最相似歷史案例,建立最適之信用評等模式,從而預測新申貸者授信的成敗,並提供相似的案例供信用審核人員進行決策。研究結果顯示:一、大量訓練案例數會有較佳的預測申貸成敗之結果。二、以k最臨近理論,投票案例數為5時,正常案例預測率及滯繳案例預測率皆可超過75%以上。三、使用投票法為低風險低獲利策略,不使用投票法為高風險高獲利策略。


    第一章 緒論 1 第一節 研究背景及動機 1 第二節 研究目的 2 第三節 研究範圍與假設 3 第四節 論文架構說明 3 第二章 文獻探討 5 第一節 案例式推論(Case Based Reasoning) 5 第二節 k-Nearest Neighbor Algorithm 10 第三節 基因演算法(Genetic Algorithms) 12 第四節 個人信用評等 19 第三章 研究設計 22 第一節 系統流程 22 第二節 結合案例式推論與基因演算法之決策輔助系統架構 23 第三節 基因演算法設計 27 第四節 資料蒐集分析 32 第四章 實驗設計及結果分析 40 第一節 實驗工具 40 第二節 基因演算法設定 41 第三節 實驗設計 42 第四節 實驗結果 43 第五節 實驗結果分析 51 第五章 結論與未來研究方向 54 第一節 結論 54 第二節 未來研究方向 54 參考文獻 56

    英文部份
    [Barletta91] Barletta, R., “An introduction to case-based reasoning.” AI Expert, Vol.6, pp.42-49, 1991.
    [Berg96a] Bergmann, R., “Adaptation Case-Based Reasoning: A Workshop at ECAI 1996 Budapest.” Proceedings of the 12th European Conference on Artificial Intelligence(ECAI-96), Workshop on Adaptation in Case-Based Reasoning.
    [Berg96b] Bergmann, R., “Questions about Adaptation in Case-Based Reasoning.” Proceedings of the 12th European Conference on Artificial Intelligence (ECAI-96), Workshop on Adaptation in Case-Based Reasoning.
    [Brown94] Brown, C.E., & Gupta, U. G., “Applying case-based reasoning to the accounting domain.” Intelligent Systems in Accounting Finance and Management, Vol.6, pp.195-214, 1994.
    [Crowder00] Crowder, R.M., McKendrick, R., Rowe, R., Auriol, E., & Tellefsen, M., “Maintenance of robotic systems using hypermedia and case-based reasoning.”, Proceedings of the IEEE International Conference on Robotics and Automation, Vol.3 , pp.2422–2427, 2000.
    [Curet95] Curet, O., “The application of case-based reasoning to assist accountants in identifying top management fraud: a study of the problem domain and the methodological issues in the development, implementation and evaluation of a case-based learning and reasoning tool.” In Proceedings of the IEE Colloquium on Case-Based Reasoning: Prospects for Applications , pp.8/1-8/4, 1995.
    [David00] David, W., “Neural network credit scoring models.” Computers & Operations Research Vol.27 , pp.1331-1152, 2000.
    [Derere00] Derere, L., “Case-based reasoning: diagnosis of faults in complex systems through reuse of experience.”, TEST Conference 2000 Proceedings International, pp.27–34, 2000.
    [Duda73] Duda, R. & Hart, P., Pattern classification and scene analysis. New York:John Wiley & Sons, 1973.
    [Dvir99] Dvir; G., Langholz, G., & Schneider, M., “Matching attributes in a fuzzy case based reasoning.” NAFIPS 99 : 18th International Conference of the North American Fuzzy Information Processing Society pp.33-36, 1999.
    [Goldberg97] Goldberg, D. E., “Genetic Algorithm in Search, Optimization, and Machine Learning”, Addison-Wesley, 1997.
    [Gomez-Albarran01] Gomez-Albarran, M., GonzaIez-Calero; P., & Fernandez-Chamizo, C., “Profiting from case-based reasoning in framework documentation.” 38th Technology of Object-Oriented Languages and Systems, pp.111–122, 2001.
    [Holland75] Holland, J. M., “Adaptation in Natural and Artificial Systems.” University of Michigan Press, Ann Arbor, MI, 1975.
    [Holsapple99] Holsapple; C. W., & Joshi, K. D., “Description and Analysis of Existing Knowledge Management Frameworks.”, Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences, pp.1-15, 1999.
    [Horn85] Horn, K. A., Compton, P., LazarusL, L., & Quinlan, J. R., “An Expert system for the interpretation of thyroid assays in a clinical laboratory.”, The Australian Computer Journal, Vol.17, No.1, pp7-11, 1985.
    [Kesh95] Kesh, S., “Case based reasoning.”; Journal of Systems Management; Vol.46, Iss.4; pg.14-19, 1995.
    [Kolodner91] Kolodner, J., “Improving human decision making through case-based decision aiding.” AI magazine, Vol.12, No.2, pp.52-68, 1991.
    [Kolodner93] Kolodner, J., “Case-Based Reasoning.”, Morgan Kaufmann Publ, San Mateo, 1993.
    [Kwon97] Kwon, Y. S., Han, I. G., & Lee, K. C., “Ordinal pairwise partitioning (OPP) approach to neural networks training in bond ration.” Intelligent Systems in Accounting Finance and Management, Vol.6, pp.23-40, 1997.
    [Maher97] Maher, J. J., & Tarun, K. S., “Predicting bond ratings using neural networks: a comparison with logistic regression.” Intelligent Systems in Accounting Finance and Management, Vol.6, pp.59-72, 1997.
    [Michael97] Michael, J. A., Gordon, B. S., Linoff “Data Mining Techniques: for marketing, sales, and customer support” John Wiley & Sons, 1997.
    [Mitchell96] Mitchell, M., “An Introduction to Genetic Algorithms”, MIT Press, 1996.
    [Quinlan93] Quinlan, J. R., “C4.5: Programs for Machine Learning”, Morgan Kaufmannm, 1993.
    [Schank77] Schank, R. C. & Abelson, R. P., “Scripts, Plans, Goals and Understanding.”, Erlbaum, Hillsdale, New Jersey, US.
    [Shin99] Shin, K. S. & Han I., “Case-based reasoning supported by genetic algorithms for corporate bond rating”, Expert System with Applications, Vol.16, pp. 85-95, 1999.
    [Singleton95] Singleton, J. C., & Surkan, A. J., “Neural networks in the capital markets”, John Wiley & Sons, pp.301-307, 1995.
    [Stephanie97] Stephanie, M. B., “A case-based reasoning approach to bankruptcy prediction modeling.”, Intelligent Systems in Accounting Finance and Management, Vol.6, pp.195–214, 1997.
    [Vasudevan94] Vasudevan, C., “An experience-based approach to software project management.“, Proceedings Sixth International Conference on Tools with Artificial Intelligence, pp.624–630, 1994.
    [Wiig93] Wiig, K., “Knowledge Management Foundations.” Arlington: Schema Press, 1993.
    中文部份
    [王信勝,民89] 王信勝,”整合分析層級程序與類神經網路之信用評分模型”,私立輔仁大學資訊管理學系碩士論文,民89年。
    [呂美慧,民88] 呂美慧,”銀行授信評等模式---Logistic Regression 之應用”,政治大學金融學系碩士論文,民88年。
    [林水茂,民87] 林水茂,”企業授信風險評估之研究”,私立淡江大學管理科學研究所碩士論文,民87。
    [金融人員研究訓練中心,民88] 金融人員研究訓練中心編撰委員會,”銀行授信實務概要”,財團法人金融人員研究訓練中心,民88。
    [洪允平,民77] 洪允平,”消費性貸款”,中小企銀季刊,第三十卷,pp 46-47,民77。
    [陳宗豪,民88] 陳宗豪,”消費者小額信用貸款之信用風險研究-甄選的觀點”,國立中山大學人力資源管理所碩士論文,民88年。
    [楊培宏,民87] 楊培宏,”在微平行電腦上法展範例學習系統研究信用卡信用風險評估”,行政院國家科學委員會專題研究計畫,民87。
    [蔣松原,民86] 蔣松原,”應用模糊理論與類神經網路於銀行授信決策模式之研究-以台灣上市公司為例”,國立中興大學統計學系碩士論文,民86年。

    QR CODE
    :::