| 研究生: |
許大鈞 Ta-Chun Hsu |
|---|---|
| 論文名稱: |
應用案例式推論與基因演算法於信用評等決策輔助系統 |
| 指導教授: |
周世傑
Shih-Chieh Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 案例式推論法 、基因演算法 、k最臨近理論 、個人信用評等 |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來本國金融機構信用快速擴充,而金融機構的營收重於放款業務,但提高放款業務比例並不能代表銀行利潤的增加,放款的風險為逾期放款,必須有好的放款品質,方不致使逾放比率增加,因此有效控管信用放款的質與量,成為目前各金融機構經營的首重目標。為減少逾放比率、提高放款量、爭取審核時間,利用知識管理之知識再使用(reuse)的審核機制是必需的,客觀科學化的評分方法更能使徵信資料得到迅速的整理與分析,以利信用放款的決策。
本研究以國內銀行業申貸案例為研究對象,採用案例式推論法(Case Based Reasoning)結合基因演算法(Genetic Algorithm)發展信用評等決策輔助系統,探討國內銀行業者使用之個人信用評分表之表列變數,並將歷史資料分為訓練及測試案例,支援本系統學習出最佳的案例屬性權重,應用在案例的擷取過程,以擷取新申貸案例的最相似歷史案例,建立最適之信用評等模式,從而預測新申貸者授信的成敗,並提供相似的案例供信用審核人員進行決策。研究結果顯示:一、大量訓練案例數會有較佳的預測申貸成敗之結果。二、以k最臨近理論,投票案例數為5時,正常案例預測率及滯繳案例預測率皆可超過75%以上。三、使用投票法為低風險低獲利策略,不使用投票法為高風險高獲利策略。
英文部份
[Barletta91] Barletta, R., “An introduction to case-based reasoning.” AI Expert, Vol.6, pp.42-49, 1991.
[Berg96a] Bergmann, R., “Adaptation Case-Based Reasoning: A Workshop at ECAI 1996 Budapest.” Proceedings of the 12th European Conference on Artificial Intelligence(ECAI-96), Workshop on Adaptation in Case-Based Reasoning.
[Berg96b] Bergmann, R., “Questions about Adaptation in Case-Based Reasoning.” Proceedings of the 12th European Conference on Artificial Intelligence (ECAI-96), Workshop on Adaptation in Case-Based Reasoning.
[Brown94] Brown, C.E., & Gupta, U. G., “Applying case-based reasoning to the accounting domain.” Intelligent Systems in Accounting Finance and Management, Vol.6, pp.195-214, 1994.
[Crowder00] Crowder, R.M., McKendrick, R., Rowe, R., Auriol, E., & Tellefsen, M., “Maintenance of robotic systems using hypermedia and case-based reasoning.”, Proceedings of the IEEE International Conference on Robotics and Automation, Vol.3 , pp.2422–2427, 2000.
[Curet95] Curet, O., “The application of case-based reasoning to assist accountants in identifying top management fraud: a study of the problem domain and the methodological issues in the development, implementation and evaluation of a case-based learning and reasoning tool.” In Proceedings of the IEE Colloquium on Case-Based Reasoning: Prospects for Applications , pp.8/1-8/4, 1995.
[David00] David, W., “Neural network credit scoring models.” Computers & Operations Research Vol.27 , pp.1331-1152, 2000.
[Derere00] Derere, L., “Case-based reasoning: diagnosis of faults in complex systems through reuse of experience.”, TEST Conference 2000 Proceedings International, pp.27–34, 2000.
[Duda73] Duda, R. & Hart, P., Pattern classification and scene analysis. New York:John Wiley & Sons, 1973.
[Dvir99] Dvir; G., Langholz, G., & Schneider, M., “Matching attributes in a fuzzy case based reasoning.” NAFIPS 99 : 18th International Conference of the North American Fuzzy Information Processing Society pp.33-36, 1999.
[Goldberg97] Goldberg, D. E., “Genetic Algorithm in Search, Optimization, and Machine Learning”, Addison-Wesley, 1997.
[Gomez-Albarran01] Gomez-Albarran, M., GonzaIez-Calero; P., & Fernandez-Chamizo, C., “Profiting from case-based reasoning in framework documentation.” 38th Technology of Object-Oriented Languages and Systems, pp.111–122, 2001.
[Holland75] Holland, J. M., “Adaptation in Natural and Artificial Systems.” University of Michigan Press, Ann Arbor, MI, 1975.
[Holsapple99] Holsapple; C. W., & Joshi, K. D., “Description and Analysis of Existing Knowledge Management Frameworks.”, Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences, pp.1-15, 1999.
[Horn85] Horn, K. A., Compton, P., LazarusL, L., & Quinlan, J. R., “An Expert system for the interpretation of thyroid assays in a clinical laboratory.”, The Australian Computer Journal, Vol.17, No.1, pp7-11, 1985.
[Kesh95] Kesh, S., “Case based reasoning.”; Journal of Systems Management; Vol.46, Iss.4; pg.14-19, 1995.
[Kolodner91] Kolodner, J., “Improving human decision making through case-based decision aiding.” AI magazine, Vol.12, No.2, pp.52-68, 1991.
[Kolodner93] Kolodner, J., “Case-Based Reasoning.”, Morgan Kaufmann Publ, San Mateo, 1993.
[Kwon97] Kwon, Y. S., Han, I. G., & Lee, K. C., “Ordinal pairwise partitioning (OPP) approach to neural networks training in bond ration.” Intelligent Systems in Accounting Finance and Management, Vol.6, pp.23-40, 1997.
[Maher97] Maher, J. J., & Tarun, K. S., “Predicting bond ratings using neural networks: a comparison with logistic regression.” Intelligent Systems in Accounting Finance and Management, Vol.6, pp.59-72, 1997.
[Michael97] Michael, J. A., Gordon, B. S., Linoff “Data Mining Techniques: for marketing, sales, and customer support” John Wiley & Sons, 1997.
[Mitchell96] Mitchell, M., “An Introduction to Genetic Algorithms”, MIT Press, 1996.
[Quinlan93] Quinlan, J. R., “C4.5: Programs for Machine Learning”, Morgan Kaufmannm, 1993.
[Schank77] Schank, R. C. & Abelson, R. P., “Scripts, Plans, Goals and Understanding.”, Erlbaum, Hillsdale, New Jersey, US.
[Shin99] Shin, K. S. & Han I., “Case-based reasoning supported by genetic algorithms for corporate bond rating”, Expert System with Applications, Vol.16, pp. 85-95, 1999.
[Singleton95] Singleton, J. C., & Surkan, A. J., “Neural networks in the capital markets”, John Wiley & Sons, pp.301-307, 1995.
[Stephanie97] Stephanie, M. B., “A case-based reasoning approach to bankruptcy prediction modeling.”, Intelligent Systems in Accounting Finance and Management, Vol.6, pp.195–214, 1997.
[Vasudevan94] Vasudevan, C., “An experience-based approach to software project management.“, Proceedings Sixth International Conference on Tools with Artificial Intelligence, pp.624–630, 1994.
[Wiig93] Wiig, K., “Knowledge Management Foundations.” Arlington: Schema Press, 1993.
中文部份
[王信勝,民89] 王信勝,”整合分析層級程序與類神經網路之信用評分模型”,私立輔仁大學資訊管理學系碩士論文,民89年。
[呂美慧,民88] 呂美慧,”銀行授信評等模式---Logistic Regression 之應用”,政治大學金融學系碩士論文,民88年。
[林水茂,民87] 林水茂,”企業授信風險評估之研究”,私立淡江大學管理科學研究所碩士論文,民87。
[金融人員研究訓練中心,民88] 金融人員研究訓練中心編撰委員會,”銀行授信實務概要”,財團法人金融人員研究訓練中心,民88。
[洪允平,民77] 洪允平,”消費性貸款”,中小企銀季刊,第三十卷,pp 46-47,民77。
[陳宗豪,民88] 陳宗豪,”消費者小額信用貸款之信用風險研究-甄選的觀點”,國立中山大學人力資源管理所碩士論文,民88年。
[楊培宏,民87] 楊培宏,”在微平行電腦上法展範例學習系統研究信用卡信用風險評估”,行政院國家科學委員會專題研究計畫,民87。
[蔣松原,民86] 蔣松原,”應用模糊理論與類神經網路於銀行授信決策模式之研究-以台灣上市公司為例”,國立中興大學統計學系碩士論文,民86年。