| 研究生: |
林揚展 Y-J Lin |
|---|---|
| 論文名稱: |
無元素法加權函數的適用性 The weighting function and base functionof EFM |
| 指導教授: |
盛若磐
Jopan Sheng 王仲宇 Chung Yue Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 無元素法 加權函數 基底函數 |
| 外文關鍵詞: | element free, weighting function, base function |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
元素釋放法(Element Free Method, EFM)是建構在以「移動式最小平方(Moving Least Squares, MLS)」內插的觀念來處理定義域內節點資料之一種無網格(meshless)數值方法。因為只需節點的資料卻不受限於節點與元素間的關聯條件,所以在需要利用「適應性方法(adaptive method)」處理問題時較有限元素法具有更大的靈活性。
以MLS觀念推導位移內插函數時,與取樣點相關連的節點數目遠超過基底函數自由度的數目,必須給予每個節點相對應的權重,方能使數值解能反應取樣點附近的真實物理狀態,如何在正確與合理的範圍選擇加權函數(weighting function),對EFM而言是重要的課題。
MLS推導位移內插函數時往往要耗費許多時間在相關節點的搜尋上甚不經濟。本論文提出固定影響圓半徑的方法來加快運算時間,數值模擬證明在無元素法中採用規則網格,及確定大小的影響圓,有助於計算時間的節省;尤其節點數目甚多時,節省的時間更是可觀。
本論文在一次基底函數(base function)的情況下,以懸臂樑問題作各種加權函數的測試,並提出選擇加權函數的可行方法。
將基底函數(base function)次數加高,改用二次基底函數,以懸臂樑問題作各種加權函數的測試,數值結果證明採用二次基底函數確實有助於改善數值解,但只限於解析解為x、y二次以下的型式,對於解析解高於二次的問題採用二次基底函數對數值解的改善並不大,對於解答屬高次冪函數的問題,採用適當的加權函數將更為重要。
In this thesis,treatment of the interpolated function including the weighting and base functions in the element free method is studied in detail.
The element free method(EFM) is a newly proposed numerical method in applied mechanics. This method is formulated by a technique so called “ moving least square”(MLS) to interpolate the discrete data within the domain to be analysed.
Both the weighting and base functions influence the interpolated function which controls the accuracy of solving solid mechanics problems.
After introducing many kinds of weighting function,the cantliver beam problems have been solved with EFM in diffrent kind weighting function and different base function.
Numerical examples illustrate that some kinds of weighting function will get better solutions than others.
After all,the rule of the choice of the weighting function has been presented.
Numerical examples illustrate that the 2 order base function will get better solutions than the 1order base function in some problems.
1.Belytschko, T., Y. Y. Lu and L. Gu,“Element-Free Galerkin Method,”International Journal for Numerical Methods in Engineering, Vol. 37, pp. 229~256 (1994).
2.Belytscho, T., Y. Krongauz, D. Organ and M. Fleming,“Meshless Methods: An Overview and Recent Developments,”Computer Methods in Applied Mechanics & Engineering, Vol. 139, pp. 3~47 (1996).
3.Shepard, D.,“A Two-dimensional Interpolation Function for Irregularly Spaced Points,”Proceedings A. C. M. National Conference, pp. 517~524 (1968).
4.Nayroles, B., G. Touzot and P. Villon,“Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements,”Computational Mechanics, Vol. 10, pp. 307~318 (1992).
5.Belytschko, T., Y. Y. Lu and L. Gu,“A New Implementation of the Element-Free Galerkin Methods,”Computer Methods in Applied Mechanics & Engineering, Vol. 113, No. 3-4, pp.397~414 (1994).
6.Belytschko, T., Y. Y. Lu and L. Gu,“Crack propagation by element- free Galerkin methods,”Engineering Fracture Mechanics, Vol.51, No. 2, pp. 295~315 (1995).
7.Felming, M., B. Moran and T. Belytschko,“Enriched element-free Galerkin methods for crack tip fields,”International Journal for Numerical Methods in Engineering, Vol. 40, pp. 1483~1504 (1997).
8.Krysl, P. and T. Belytschko,“Analysis of thin plates by the element-free Galerkin method,”Computational Mechanics, Vol. 17, pp. 26~35 (1995).
9.Krysl, P. and T. Belytschko,“Analysis of thin shells by the element-free Galerkin method,”International Journal of Solids & Structures, Vol. 33, pp. 3057~3080 (1996).
10.Modaressi, Hormoz and Philippe Aubert,“A Diffuse Element-Finite Element Technique for Transient Coupled Analysis,”International Journal for Numerical Methods in Engineering, Vol. 39, pp. 3809~3838 (1996).
11.Belytschko, T., D. Organ and Y. Krongauz,“Coupled finite element-element-free Galerkin method,”Computational Mechanics, Vol. 17, pp. 186~195 (1995).
12.Hegen, D.,“Element Free Galerkin Methods in Combination with Finite Element Approaches,”Computer Methods in Applied Mechanics & Engineering,Vol.135,pp. 143~166(1996).
13.Zhu, T. and S. N. Atluri,“A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method,”Computational Mechanics, Vol. 21, pp. 211~222 (1998).
14.Chung, H.-J. and T. Belytschko,“An error estimate in the EFG method,”Computational Mechanics, Vol. 21, pp. 91~100 (1998).
15.Lancaster Peter and Kestutis Salkausskas , “Curve and Surface Fitting”ACADEMIC PRESS INC ,San Diego(1986).
16.錢偉長, 「廣義變分原理」, 亞東書局 (1988).
17.何文欽, 「加權節點選配法之理論分析與數值模擬」, 碩士論文, 國立中央大學土木工程研究所, 中壢(1998).
18.吳振瑞, 「元素釋放法之邊界處理」, 碩士論文, 國立中央大學土木工程研究所, 中壢(1999).
19.徐次達, 「固體力學加權殘值法」,同濟大學出版社,中國上海(1987).
20.邱吉寶, 「加權殘值法的理論與應用」,宇航出版社,中國北京(1991).
21.朱寶安,「誤差界與權函數-兼論線性規劃加權殘數法」,西南交通出版社出版,第三屆全國加權殘執法會議論文集,中國四川(1986.6).
22.Melvin J.Maron Robert J.Lopez“Numerical Analysis”Wadsworth Publishing Company ,Belmont California(1990).
23.吳宗正,「迴歸分析」,三民書局出版,台灣台北(民國82年).
24.戴久永,「統計概念與方法」,三民書局,台灣台北(民國83年).
25.牛庠均,「現代變分原理」,北京工業大學出版社,中國北京,(1992.7).
26.楊倫標、高英儀編著,「模糊數學-原理與應用」,華南理工大學理工出版社出版,中國廣州 (1993.8).
27.吳家龍編著,「彈性力學」,同濟大學出版社出版,中國上海 (1996.3).