跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許家輔
Chia-Fu Hsu
論文名稱: 紋理扶手椅石墨烯奈米帶的熱電特性
Thermoelectric Properties of Textured Armchair Graphene Nanoribbons
指導教授: 郭明庭
Ming-Ting Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 33
中文關鍵詞: 石墨烯奈米帶紋理扶手椅熱電特性量子侷限效應
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電材料是一種具有特殊特性的材料,它們可以將熱能轉換成電能,或者將電能轉換成熱能。一個良好的熱電材料是呈現半導體特性,然而石墨烯卻是呈現金屬特性,於是我們利用Quantun Confinement的方式將石墨烯轉化為石墨烯奈米帶。由於有研究人員發現,把armchair graphene nanoribbons上方碳原子週期勢移除,能夠形成全新的結構,其獨特的結構可以降低聲子熱導率,同時提高席貝克係數和功率因子,進而提高熱電優值,此結構稱為textured armchair graphene nanoribbons。我們將評估不同參數組合下textured armchair graphene nanoribbons的功率因子和熱電優值。這項研究將有助於深入了解textured armchair graphene nanoribbons的熱電特性,並為開發高效能熱電材料和相關應用提供重要的指標。


    Thermoelectric materials belong to a class of unique materials capable of converting heat energy into electrical energy, or vice versa. An ideal thermoelectric material exhibits semiconductor properties, whereas graphene possesses metallic properties. To address this, we employ quantum confinement techniques to transform graphene into graphene nanoribbons. Researchers have made an intriguing discovery by eliminating the carbon atomic periodic potential above armchair graphene nanoribbons, resulting in the formation of a new structure. This distinctive structure effectively reduces the phonon thermal conductivity, while simultaneously increasing the Seebeck coefficient and power factor, thereby enhancing the thermoelectric figure of merit. This structure is referred to as "textured armchair graphene nanoribbons." In this study, we will assess the power factor and thermoelectric figure of merit of textured armchair graphene nanoribbons using various parameter combinations. The primary objective of this research is to provide valuable insights into the thermoelectric properties of textured armchair graphene nanoribbons, serving as a vital resource for the development of high-performance thermoelectric materials and their associated applications.

    摘要 I Abstract II 目錄 III 圖目錄 V 第一章、導論 1 1-1前言 1 1-2 熱電效應 2 1-3 石墨稀 4 1-4 研究動機 5 第二章、系統模型 6 2-1 Graphene structure 6 2-2 石墨稀奈米帶 7 2-3 電子傳輸係數 8 2-4 熱電係數 10 2-5 局部態密度(Local Density of State(LDOS)) 12 第三章、熱電特性的模擬與分析 14 3-1 AGNR與t-AGNR在常溫之下的熱電特性 14 3-2改變armchair edge原子數Na對熱電特性的影響 15 3-3改變zigzag edge原子數Nz對熱電特性的影響 16 3-4 Tunneling rate對熱電特性的影響 17 3-5 溫度對熱電特性的影響 18 第四章、結論 20 參考文獻 21

    [1]Y. Li, J. Song and J. Yang. A review on structure model and energy system
    design of lithium-ion battery in renewable energy vehicle. Renew. Sustain.
    Energy Rev. 37, 627 (2014).
    [2] A. I. Hofmann. R. Kroon and C. Müller. Doping and processing of organic
    semiconductors for plastic thermoelectrics. Woodhead Publishing. Shaxton 429
    (2019).
    [3] Y. G. Gurevich and G. N. Logvinov. Physics of thermoelectric cooling.
    Semicond. Sci. Technol. 20, R57 (2005).
    [4] W. L. Lee, P. J. Shih, C. C. Hsu and C. L. Dai. Fabrication and
    characterization of thermoelectric generators using silicon micromachining
    technology. Micromachines 10, 660 (2019).
    [5] N. Yujin, K. Seoha, R. M. Siva Pratap, Y. Seonghoon, K. Kyung Tae and P.
    Kwi-Il. ScienceDirect, Energy harvesting from human body heat using highly
    flexible thermoelectric generator based on Bi2Te3 particles and polymer
    composite. Elsevier. Amsterdam 924, 166575 (2022).
    [6] M. V. Vedernikov and E. K. Iordanishvili. A.F.Ioffe and Origin of Modern
    Semiconductor Thermoelectric Energy Conversion. IEEE Xplore 10, 740313
    (1998).
    [7] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S.
    Maekawa and E. Saitoh. Observation of the spin Seebeck effect. Nature 455, 778
    (2008).
    [8] R. Venkatasubramanian, E. T. Colpitts and B. O'Quinn. Thin-film
    thermoelectric devices with high room-temperature figures of merit. Nature 413,
    597 (2001).
    [9] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard and J.
    R. Heath. Silicon nanowires as efficient thermoelectric materials. Nature 10, 451
    (2008).
    [10] T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge. Quantum Dot
    Superlattice Thermoelectric Materials and Devices. Science 27, 297 (2002).
    [11] F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari. Graphene photonics and
    optoelectronics. Nature Photonics 4, 611 (2010).
    [12] A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Materials 6,
    183 (2007).
    [13] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I.
    Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff. Large-Area
    Synthesis of High-Quality and Uniform Graphene Films on Copper Foils.
    Science 324, 1312 (2009).
    [14] Y. B. Zhang, Y. W. Tan, H. L. Stormer and P. Kim. Experimental observation
    of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201
    (2005).
    [15] Y. M. Lin and M. S. Dresselhaus. Thermoelectric properties of superlattice
    nanowires. Phys. Rev. B 68, 075304 (2003).
    [16] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K.
    Geim. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).
    [17] N. Ni, S. Barg, E. Garcia-Tunon, F. M. Perez, M. Miranda, C. Lu, C.
    Mattevi and E. Saiz. Understanding Mechanical Response of Elastomeric
    Graphene Networks. Sci. Rep. 5, 13712 (2015).
    [18] T. Ando, T. Nakanishi and R. Saito. Berry's Phase and Absence of Back
    Scattering in Carbon Nanotubes. JPSJ. 67, 2857 (1998).
    [19] H. C. Chung, C. P. Chang, C. Y. Lin and M. F. Lin. Electronic and optical
    properties of graphene nanoribbons in external fields. Phys. Chem. Chem. Phys.
    18, 7573 (2016).
    [20] David M. T. Kuo. Thermoelectric and electron heat rectification properties
    of quantum dot superlattice nanowire arrays. AIP Advances 4, 045222 (2020).
    [21] T. T. Phung, R. Peters, A. Honecker, G. T. de Laissardière and J. Vahedi.
    Spin-caloritronic transport in hexagonal graphene nanoflakes. Phys. Rev. B 102,
    035160 (2020).
    [22] P. Dollfus, V. H. Nguyen and J. Saint-Martin. Thermoelectric effects in
    graphene nanostructures. J. Phys-Condens Mater 27, 133204 (2015).
    [23] H. Haug and A. P. Jauho. Quantum Kinetics in Transport and Optics of
    Semiconductors. (Springer, Heidelberg, 1996).
    [24] T. Markussen, A. P. Jauho and M. Brandbyge. Surface-Decorated Silicon
    Nanowires: A Route to High-ZT Thermoelectrics. Phys. Rev. Lett. 103, 055502
    (2009).
    [25] D. H. Santamore and M. C. Cross. Effect of Phonon Scattering by Surface
    Roughness on the Universal Thermal Conductance. Phys. Rev. Lett. 87, 115502
    (2001).
    [26] L. G. C. Rego and G. Kirczenow. Quantized Thermal Conductance of
    Dielectric Quantum Wires. Phys. Rev. Lett. 81, 232 (1998).
    [27] Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada and H. Fukuyama.
    Scanning tunneling microscopy and spectroscopy of the electronic local density
    of states of graphite surfaces near monoatomic step edges. Phys. Rev. B 73,
    085421 (2006).

    QR CODE
    :::