| 研究生: |
彭書彧 Peng-Shu-Yu |
|---|---|
| 論文名稱: |
用於深紫外發光二極體的氮化硼生長 Growth of boron nitride for deep ultraviolet light-emitting Diodes |
| 指導教授: | 賴昆佑 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 氮化硼 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,深紫外(deep ultraviolet, DUV, 波長 ≤ 290 nm)發光二極體 (light-emitting diodes,
LEDs) 的外部量子效率很難突破 20%,遠低於可見光 LED 的水準,主要原因在於:深紫外
LED 的 P 型磊晶層必須同時具備高穿透率、高導電性,而這是一般 DUV LED 常用材料—氮
化鋁鎵(AlGaN)所不具備的特性。然而 hBN (hexagonal Boron Nitride)是近年來熱門的三五
族氮化物材料,其兼具高能帶、低電洞活化能的特性,能使深紫外光波段的光不被吸收,
亦能大幅提升電洞濃度,增加導電性,是深紫外 LED 所需的理想 P 型材料。此外,氮化硼
的能帶高達 6 eV,接近氮化鋁 (AlN) 的 6.1 eV,能阻擋電子離開量子井,增加 DUV LED 的
內部量子效率。文獻顯示,氮化硼的電洞活化能最低可達 30 meV,遠低於 AlN 的 510 meV,
能提供大量電洞進入量子井,提升電洞電子對在量子井的複合數量,增強 DUV LED 的發光
效率,也能降低操作電壓,減少熱能生成,有助於提升元件的使用壽命。上述的優點,使
氮化硼成為目前 DUV LED 非常熱門的 P 型材料
Despite years of research efforts, the external quantum efficiency of deep ultraviolet (DUV,
wavelength ≤ 290 nm) LEDs rarely exceed 20%, far below the level of visible LEDs. The main
reason is that the p-type contact layer of DUV LEDs must simultaneously fulfill the requirement of
high transparent and high conductive, which is extremely difficult to achieve with the commonly
used material, AlGaN. To address the issue, hexagonal boron nitride (hBN) is recently regarded as a
potential alternative to AlGaN. hBN has the characteristics of high energy band and low hole
activation energy, which can prevent light absorption and provide sufficient free hole concentration
in the p-type layer. Because of the two merits, hBN is an ideal p-type material for DUV LEDs. In
addition, the wide bandgap (6 eV) of hBN can form a large band offset with AlGaN, effectively
blocking the electron spill from quantum wells. The hole activation energy of boron nitride is
reported to be as low as 30 meV, which is much lower than the ~510 meV of AlN. With such small
activation energy, hBN can provide a large number of holes to enter the quantum well, enhancing
the quantum efficiency of DUV LEDs. The low hole activation energy can also lower the operating
voltage, reduce heat generation, and thus improve device lifetime. The above-mentioned advantages
make boron nitride a promising p-type material for DUV LEDs.
[1] H. X. Jiang and J. Y. Lin, Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond.
Sci. Technol. 29, 084003 (2014).
[2] X. H. Jiang et al. Reduction of the Mg Acceptor Activation Energy in GaN, AlN, Al0.83Ga0.17N
and MgGaδ-Doping (AlN)5/(GaN)1: The Strain Effect. J. Phys. D: Appl. Phys. 48, 475104 (2015).
[3] M. Soltani, R. Soref, T. Palacios, and D. Englund, AlGaN/AlN integrated photonics platform for
the ultraviolet and visible spectral range. Optics Express. 24, 25415-25423 (2016).
[4] R. A. Patil. et al. Size-controllable synthesis of Bi/Bi2O3 heterojunction nanoparticles using
pulsed Nd:YAG laser deposition and metal-semiconductor-heterojunction-assisted
photoluminescence. Nanoscale 8, 3565-3571 (2016).
[5] Seung Hee Lee. et al. Improvements in structural and optical properties of wafer-scale hexagonal
boron nitride flm by post-growth annealing. Scientific Reports. 9, 10590 (2019).
[6] Y. Zhang, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature. 459,
820-823 (2009).
[7] Th. Böker, et al. “Band structure of MoS2, MoSe2, and a - MoTe2: Angle-resolved photoelectron
spectroscopy and ab initio calculations. Phys. Rev. B. 64, 235305 (2001).
[8] L. Wang, et al. Negligible Environmental Sensitivity of Graphene in a Hexagonal Boron
Nitride/Graphene/h-BN Sandwich Structure. ACS Nano. 6, 9314–9319 (2012).
[9] M. Bokdam, G. Brocks, M. I. Katsnelson, and P. J. Kelly. Schottky barriers at hexagonal boron
nitride/metal interfaces: A first-principles study. Phys. Rev. B. 90, 085415 (2014).
[10] Xu Yang, et al. Growth of hexagonal boron nitride on sapphire substrate by
pulsed-mode metalorganic vapor phase epitaxy, Journal of crystal Growth. 482, 1-8 (2018).
[11] Q. S. Paduano, M. Snure, and J. Shoaf. Effect of V/III ratio on the growth of hexagonal boron
nitride by MOCVD. Mater. Res. Soc. Symp. Proc. 1726, 1–6 (2015).
[12] Chuang-Yuan Chiu, Growth of High-Quality AlN Via Pulsed-Flow MOCVD. Master's thesis.
35
National Central University. (2020).
[13] Chun-Pin Huang, High Quality AlN and BN Grown by MOCVD for Deep UV LEDs. Master
Thesis. National Central University. (2020).
[14] Chun-Pin Huang, et al. Crystal Transformation of Cubic BN Nanoislands to Rhombohedral
BN Sheets on AlN for Deep-UV Light-Emitting Diodes, ACS Appl. Nano Mater. 5285–5290 (2020).
[15] Y. Kobayashi, et al. Hexagonal Boron Nitride Grown by MOVPE, Journal of Crystal Growth.
310, 5048–5052 (2008).
[16] J. Iwański, et al. Delamination of Large Area Layers of Hexagonal Boron Nitride Grown
by MOVPE, Acta Physica Polonica A. 139, 457-461 (2021).
[17] Adama Mballo, et al. Towards P-Type Conduction in Hexagonal Boron Nitride: Doping Study
and Electrical Measurements Analysis of hBN/AlGaN Heterojunctions. Nanomaterials, 11, 211
(2021).
[18] Kenji Watanabe, et al. Far-ultraviolet plane-emission handheld device based on hexagonal boron
nitride. Nature Photonics. 3, 591–594 (2009).
[19] R. Dahal, et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet
photonic material. Appl. Phys. Lett. 98, 211110 (2011)
[20] S. Majety, et al. Epitaxial growth and demonstration of hexagonal BN/AlGaN p-n junctions for
deep ultraviolet photonics. Appl. Phys. Lett. 100, 061121 (2012