| 研究生: |
蔣智偉 Chih-Wei Chiang |
|---|---|
| 論文名稱: |
添加不同金屬顆粒對鎂鋅鈣 塊狀金屬玻璃複材熱性質及機械性質之研究 Study of Thermal and Mechanical Properties of Mg-based Bulk Metallic Glass Composite with Ex-situ Adding Different Metal Particles |
| 指導教授: |
鄭憲清
Shian-Ching Jang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 生物降解 、生物相容性 、金屬玻璃 、核殼結構 、裂紋 、破裂韌性 |
| 外文關鍵詞: | biodegrade, biocompatibility, bulk metallic glass composite (BMGC), core-shell structure, crack, fracture toughness |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於鎂鋅鈣塊狀金屬玻璃材料沒有晶界,相較於聚乳酸類之高分子材料可大幅減緩降解速度,同時,具有較好的機械性質以及與人體的骨骼相近之楊氏係數,因此適合用於骨科植入物。但是,缺乏韌性的金屬玻璃特性影響了後續加工與應用,所以,本研究選擇以具有較佳玻璃形成能力的Mg66Zn29Ca5 塊狀金屬玻璃為基材,分別添加不同體積分率(5、10和15 vol.%)之鈦鋯金屬玻璃顆粒、鐵顆粒及多孔鉬顆粒來製作鎂基金屬玻璃複材,利用外添加顆粒來達到散佈強化的效果,使其具有阻擋裂紋傳遞,藉此提升塊狀金屬玻璃之韌性,並探討不同直徑及核殼結構的棒材之非晶性、熱性質及機械性質。以直徑3 mm棒材為例,添加多孔鉬顆粒之複材,隨著添加量增加至15 vol.%,破裂韌性從1.10提升至6.01 MPa‧m1/2,且最大抗壓強度亦能保持702 MPa,亦在壓縮測試後觀察到vein-like pattern,因所添加顆粒與鎂鋅鈣金屬玻璃之彈性係數不同,因此能夠吸收裂紋的能量,阻止其快速傳遞與增生,雖然有些較強裂紋無法完全抵擋,但能延長及分散較強的裂紋,進而減緩材料被破壞的時間。為提升棒材尺寸並維持其非晶性,發展出一個新核殼結構(core-shell structure),由實驗結果顯示,core-shell structure棒材確實能提升其非晶性及熱性質,且結果相似於3 mm棒材,而添加多孔鉬顆粒之3 mm與core-shell複材,依然保持非晶質結構及良好玻璃形成能力,其破裂韌性為4.81 MPa‧m1/2,且最大抗壓強度為589 MPa,與直徑3 mm棒材表現相仿。
Mg-Zn-Ca bulk metallic glass(BMG) is a well-known candidate for bio-implant application due to its biocompatibility and uniform biodegradability which is suitable for suture anchor. Suture anchors are utilized as fixation devices in orthopedic surgery for repair of soft tissue injuries in the knee, shoulder, hip and ankle joints. However, the intrinsic brittleness of Mg-Zn-Ca BMG has to be significantly improved for commercial application. Accordingly, the concept of ex-situ adding ductile metallic particles was introduced to produce the Mg-Zn-Ca bulk metallic glass composite (BMGC) to meet the requirement of mechanical property for the application of suture anchor. In this Study, the Mg66Zn29Ca5 BMG was selected as the base alloy and added with different micro-sized spherical metal particles (Fe or porous Mo or TiZr-based metallic glass particles) to enhance its fracture toughness. The optima results occur at 3 mm Mg-Zn-Ca BMGC rods with 15 vol.% porous Mo particles, the fracture toughness increased upto 6.01 MPa‧m1/2 and remained the maximum compressive strength of 702 MPa. Due to the limitation of cooling rate, both Mg66Zn29Ca5 BMG and BMGC rods with 4 mm in diameter present only partial amorphous status. Therefore, a novel core-shell structure rod was developed, with pure Mg rod as core and Mg66Zn29Ca5 BMG and BMGC as shell to increase the cooling rate. As a result, the 1.25 mm thick shell area of 4 mm core-shell BMGCs rods (added with porous Mo particles) exhibits a fully amorphous matrix co-existing with Mo particles. The optimum performance occurs at the 4 mm core-shell rods with 15 vol.% porous Mo particle additions, the fracture toughness increased from 1.5 to 4.81 MPa∙m1/2 and remained the maximum compressive strength of 589 MPa.
[1].D. F. Williams, “Implantable prostheses”, Physics in Medicine & Biology, Vol. 25, 1980, pp. 611-636.
[2].Mark P. Staiger, Alexis M. Pietak, Jerawala Huadmai and George Dias, “Magnesium and its alloy as orthopedic biomaterials: A review”, Biomaterials, Vol. 27, 2006, pp. 1728-1734.
[3].Y. Xin, K. Huo, H. Tao, G. Tang and Paul K. Chu, “Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment”, Acta Biomaterialia, Vol. 4, 2008, pp. 2008-2018.
[4].D. M. Miskovic, K. Pohl, N. Birbilis, K. J. Laws and M. Ferry, “Examining the elemental contribution towards the biodegradation of Mg-Zn-Ca ternary metallic glasses”, Journal of Materials Chemistry B, Vol. 4, 2016, pp. 2679-2690.
[5].Q. F. Li, H. R. Weng, Z. Y. Suo, Y. L. Ren, X. G. Yuan and K. Q. Qiu, “Microstructure and mechanical properties of bulk Mg-Zn-Ca amorphous alloys and amorphous matrix composites”, Materials Science and Engineering A, Vol. 487, 2008, pp. 301-308.
[6].P. C. Wong, “Development of biodegradable Mg-Zn-Ca metallic glass for the application of orthopedic implant”, unpublished doctoral dissertation, National Yang-Ming University, 2017.
[7].T. B. Matias, V. Roche, R. P. Nogueira, G. H. Asato, C. S. Kiminami, C. Bolfarini, W. J. Botta and A. M. Jorge, “Mg-Zn-Ca amorphous alloys for application as temporary implant: Effect of Zn content of the mechanical and corrosion properties”, Materials and Design, Vol. 110, 2016, pp. 188-195.
[8].A. C. Lund and Christopher A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, Vol. 95, 2004, pp. 4815-4822.
[9].吳學陞,新興材料-塊狀金屬玻璃金屬材料,工業材料,第149期,1999年。
[10].A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, Vol. 48, 2000, pp. 279-306.
[11].A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgica, Vol. 27, 1979, pp. 47-58.
[12].F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, Vol. 25, 1977, pp. 407-415.
[13].A. Inoue, “Bulk amorphous alloys practical characteristics and applications, institute for material research”, Tohoku University, Sendai, Japan, 1999.
[14].顧宜,複合材料,新文京開發出版公司,1992年。
[15].C. W. Chu, J. S. C. Jang, S. M. Chiu and J. P. Chu, “Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process”, Thin Solid Films, Vol. 517, 2009, pp. 4930-4933.
[16].W. Klement, R. Willens and P. Duwez, “Non-crystalline structure in solidified Gold-Silicon alloys”, Nature, Vol. 187, 1960, pp. 869-870.
[17].H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, Vol. 41, 1970, pp. 1237-1238.
[18].H. H. Liebermann and C. D. Graham, “Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions”, IEEE Transactions on Magnetics, Vol. 6, 1976, pp. 921-923.
[19].M. C. Narasimhan, “Continuous casting method for metallic strips”, United states patent and trademark office certificate of correction, 1980.
[20].A. Inoue, T. Zhang and T. Masumoto, “Al–La–Ni amorphous alloys with a wide supercooled liquid region”, Materials Transactions, JIM, Vol. 30, 1989, pp. 965-972.
[21].T. Zhang, A. Inoue and T. Masumoto, “Amorphous Zr-Al-TM (TM = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K”, Materials Transactions, JIM, Vol. 32, 1991, pp. 1005-1010.
[22].A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions, JIM, Vol. 32, 1991, pp. 609-616.
[23].A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates (overview)”, Materials Transactions, JIM, Vol. 36, 1995, pp. 866-875.
[24].A. Inoue, B. Shen, H. Koshiba, H. Kato and A. R. Yavari, “Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties”, Nature materials, Vol. 2, 2003, pp. 661-663.
[25].H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters, Vol. 87, 2005, pp. 181915.
[26].D. G. Pan, H. F. Zhang, A. M. Wang and Z. Q. Hu, “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, Vol. 89, 2006, pp. 261904.
[27].B. Zberg, Peter J. Uggowitzer and Jorg F. Loffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature materials, Vol. 8, 2009, pp. 887-891.
[28].L. J. Chang, J. S. C. Jang, B. C. Yang and J. C. Huang, “Crystallization and thermal stability of the Mg65Cu25−xGd10Agx (x = 0 - 10) amorphous alloys”, Journal of Alloys and Compounds, Vol. 434-435, 2007, pp. 221-224.
[29].L. J. Chang, G. R. Fang, J. S. C. Jang, I. S. Lee, J. C. Huang and C. Y. A. Tsao, “Hot workability of the Mg65Cu20Y10Ag5 amorphous/ nanoZrO2 composite alloy within supercooled temperature region”, Key Engineering Materials, Vol. 351, 2007, pp. 103-108.
[30].J. S. C. Jang and J. Y. Ciou, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, Applied Physics Letters, Vol. 92, 2008, pp. 011930.
[31].P. C. Wong, “Mechanical properties of magnesium based bulk meallic glass composites with the Ti particles”, unpublished Master's thesis, National Central University, 2012.
[32].M. S. Suei, “Influences of Ta and Ti-6Al-V particle Additions on the Mechanical Properties of MgZnCa-Based Amorphous Alloy”, unpublished Master's thesis, National Central University, 2015.
[33].R. W. Cahn, P. Hassen and E.J. Kramer, Materials Science and Technology, Vol. 9, New York, USA, 1991.
[34].W. Paul, G. A. N. Connell and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, Advances in Physics, Vol. 22, 1973, pp. 531-580.
[35].K. L. Chapra, “Thin film phenomena”, McGraw-Hill, New York, 1969.
[36].A. Peker and W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Applied Physics Letters, Vol. 63, 1993, pp. 2342-2344.
[37].C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden and J. M. Galbraith, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy”, Journal of Non-Crystalline Solids, Vol. 284, 2001, pp. 134-138.
[38].P. G. Debenedetti and F. H. Stillinger, “Supercooled liquids and the glass transition”, Nature, Vol. 410, 2001, pp. 259-267.
[39].H. S. Chen and D. Turnbull, “Evidence of a glass–liquid transition in a Gold-Germanium–Silicon alloy”, The Journal of Chemical Physics, Vol. 48, 1968, pp. 2560-2571.
[40].Z. P. Lu and C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta materialia, Vol. 50, 2002, pp. 3501-3512.
[41].X. H. Du, C. Huang, C.T. Liu and Z.P. Liu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of Applied Physics, Vol. 101, 2007, pp. 086108.
[42].Z. Zhang, F. Wu, G. He and J. Eckert, “Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials”, Journal of Materials Science and Technology, Vol. 23, 2007, pp. 747-767.
[43].T. H. Li, “Development and fabrication of the bio-compatible Ti-based metallic glass powders for additive manufacturing”, unpublished doctoral dissertation, National Central University, 2019.