跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝宜哲
Yi-Che Hsieh
論文名稱: H∞控制器與狀態回授估測器設計-齊次多項式平方和檢測法
H∞ Controller and State Feedback Observer Design based on Homogeneous SOS
指導教授: 羅吉昌
Lo, Ji-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 81
中文關鍵詞: 平方和Takagi-Sugeno模糊系統H∞ 控制H∞觀測尤拉齊次多項式定理參數相依齊次多項式
外文關鍵詞: sum of squares, T-S fuzzy systems, H∞ control, H∞ observer, Euler’s theorem for homogeneous function, HPPD
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要探討在連續時間下,考慮一加入干擾的非線性系統,再利用H∞性能指標來探討非線性系統的穩定性與性能影響,而我們藉由尤拉齊次定理分別推導出H∞控制系統與H∞狀態回授估測系統的李亞普諾夫檢測條件,因利用尤拉齊次多項式定理的關係,我們可以避免了李亞普諾夫函數V(x)對時間t微分所產生的Q(x)之微分項。

      最後,再將所得之李亞普諾夫函數經平方和檢測方法改寫為純量形式,以平方和檢測法去檢驗其系統之穩定性,藉此確保我們的閉迴路系統的穩定性與狀態回授估測器追蹤狀態的性能,在論文的第五章我們分別提供控制系統與狀態回授估測系統各2個數值分析的例子,來證明其有效性。


     In this thesis, a polynomial nonlinear system, modelled by T-S fuzzy model with added disturbances, is studied. Based on non-quadratic, homogeneous Lyapunov function, both controller and observer are considered in the analysis where Euler's homogeneous polynomial theorem is used to avoid the derivative term dot Q(x) that is seen in the existing papers.

    After some background reviewed, we started with fuzzy system models established by Taylor series. To tackle the derivative Lyapunov dot Q(x) terms and the zero row structure in the input matrix B(x) in the existing papers, Euler homogeneous polynomial theory is applied to derive the stabilization condition in LMI formulation and then converted into SOS form so that SOSTOOLS is used to for synthesis analysis.

     Finally, Sum of Square is applied to solve for the Lyapunov Q(x) and controller/observer gains, thereby ensuring the stability of the closed-loop feedback system as well as the observed-state feedback control system. Several examples are provided in Chapter 5 to demonstrate the analysis is effective.

    一、 背景介紹..................................................................... 1 1.1 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 論文結構 . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 符號標記 . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 預備定理 . . . . . . . . . . . . . . . . . . . . . . . 6 二、 基礎定理介紹.............................................................. 8 2.1 H1性能優化定理 . . . . . . . . . . . . . . . . . . . 8 2.2 尤拉齊次多項式定理(Euler's homogeneity theorem) 9 2.3 李亞普諾夫定理(Lyapunov theorem) . . . . . . . . 11 2.4 蕭轉換定理(Schur complement) . . . . . . . . . . . 13 2.5 建模技巧 . . . . . . . . . . . . . . . . . . . . . . . 14 三、 連續系統架構與檢測條件............................................ 17 3.1 連續系統架構介紹 . . . . . . . . . . . . . . . . . . 17 3.2 H1連續模糊閉迴路控制系統之檢測條件 . . . . . . 18 3.3 H1連續模糊閉迴路觀測系統之檢測條件 . . . . . . 21 四、 平方和檢測條件 .......................................................... 27 4.1 平方和檢驗法 . . . . . . . . . . . . . . . . . . . . . 27 4.2 平方和檢驗法之連續模糊閉迴路控制系統檢測條件 . 30 ix 4.3 平方和檢驗法之H1控制連續模糊系統檢測條件 . . . 31 4.4 平方和檢驗法之連續模糊閉迴路觀測系統檢測條件 . 32 4.5 平方和檢驗法之H1觀測連續模糊系統檢測條件 . . . 33 五、 Matlab電腦模擬 ......................................................... 35 5.1 例題一 . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.2 例題二 . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3 例題三 . . . . . . . . . . . . . . . . . . . . . . . . 46 5.4 例題四 . . . . . . . . . . . . . . . . . . . . . . . . 53 六、 結論與未來方向 .......................................................... 60 6.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2 未來研究方向 . . . . . . . . . . . . . . . . . . . . . 61 文獻 ................................................................................................. 63

    [1] K. Tanaka, H. Yoshida, H.Ohtake and H.O.Wang, \A sum-ofsquares approach to modeling and control nonlinear dynamical
    systems with polynomial fuzzy systems ," IEEE Transactions on
    fuzzy systems vol. 17, pp.911{922, August. 2009.
    [2] T. Takagi and M. Sugeno, \Fuzzy identi cation of systems and its
    applications to modelling and control," IEEE Trans. Syst., Man,
    Cybern., vol. 15, no. 1, pp. 116{132, Jan. 1985.
    [3] M. Sugeno and G. Kang, \Structure identi cation of fuzzy
    model," Fuzzy Set and Systems, vol. 28, pp. 15{33, 1988.
    [4] K. Tanaka and M. Sugeno, \Stability analysis and design of fuzzy
    control systems," Fuzzy Set and Systems, vol. 45, pp. 135{156,
    1992.
    [5] W. Haddad and D. Bernstein, \Explicit construction of quadratic
    Lyapunov functions for the small gain, positive, circle and
    Popov theorems and their application to robust stability. Part II:
    discrete-time theory", Int'l J. of Robust and Nonlinear Control,
    vol. 4, pp. 249{265, 1994.
    [6] H.O. Wang and K. Tanaka, \Parallel Distributed Compensation
    of Nonlinear Systems by Takagi-Sugeno Fuzzy Model", United
    Technologies Research Center, pp. 531{538, 1995.
    [7] M. Johansson, A. Rantzer, and K.E. Arzen, \Piecewise
    quadratic stability of fuzzy systems", IEEE Trans. Fuzzy Systems,
    7(6):713{ 722, December 1999.
    [8] G. Feng, Controller synthesis of fuzzy dynamic systems based on
    piecewise Lyapunov functions", IEEE Trans. Circuits and Syst I:
    Fundamental Theory and Applications, 11(5):605{612, 2003.
    [9] D. Sun G. Feng, C. Chen and Y. Zhu, \H1 controller synthesis
    of fuzzy dynamic systems based on piecewise Lyapunov functions
    63
    and bilinear matrix inequalities", IEEE Trans. Circuits and Syst.
    I: Fundamental Theory and Applications, 13(1):94{103, 2005.
    [10] T. M. Guerra and L. Vermeiren, \LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the
    TakagiSugeno's form", Automatica, 40:823{829, 2004.
    [11] B. C. Ding, H. Sun, and P. Yang, \Further studies on LMI-based
    relaxed stabilization conditions for nonlinear systems in Takagisugeno's form", Automatica, 43:503{508, 2006.
    [12] X. Chang and G. Yang, \A descriptor representation approach
    to observer-based H∞ control synthesis for discrete-time fuzzy
    systems", Fuzzy Set and Systems, 185(1):38{51, 2010.
    [13] B. Ding , \Stabilization of Takagi-Sugeno model via nonparallel distributed compensation law", IEEE Trans. Fuzzy Systems,
    18(1):188{ 194, February 2010.
    [14] A. Jaadari, J. Pan, S. Fei and T. M. Guerra , \Nonquadratic
    stabilization of continuous T-S fuzzy models: LMI solution for local approach", IEEE Trans. Fuzzy Systems, 20(3):594{602, 2012.
    [15] J. B. Park, D. H. Lee and Y. H. Joo , \Approaches to extended
    non-quadratic stability and stabilization conditions for discretetime Takagi-Sugeno fuzzy systems", Automatica, 47(3):534{538,
    2011.
    [16] John C. Doyle, Keith Glover , \State-Space Solutions to Standard H2
    and H1 Control Problems", IEEE Trans. on Automatic
    Control, vol.34 no.8 1989.
    [17] P. Parrilo, Structured Semide nite Programs and Semialgebraic
    Geometry Methods in Robustness and Optimization. Caltech,
    Pasadena, CA.: PhD thesis, 2000.
    [18] S. Prajna, A. Papachristodoulou, and P. Parrilo, \Introducing
    SOSTOOLS: a general purpose sum of squares programming
    solver," in Proc of IEEE CDC, Montreal, Ca, Jul. 2002, pp. 741{
    746.
    [19] S. Prajna, A. Papachristodoulou , \New developments on sum of
    squares optimization and SOSTOOLS," in Proc. the 2004 American Control Conference, 2004, pp. 5606{5611.
    64
    [20] H. Ichihara , \Observer design for polynomial systems using
    convex optimization," in In Proc. of the 46th IEEE CDC, pages
    5347{5352, New Orleans, LA, December 2007.
    [21] J. Xu, K. Y. Lum, \A SOS-based approach to residual generators
    for discrete-time polynomial nonlinear systems," in In Proc. of
    the 46th IEEE CDC, pages 372{377, New Orleans, LA, December
    2007.
    [22] J . Xie, L. Xie, and Y. Wang , \New developments on sum of
    squares optimization and SOSTOOLS," in In Proc. of the 2007
    American Control Conference, pages 4829{4834, New York, NY,
    July 2007.
    [23] K. Tanaka, H. Yoshida, \A sum of squares approach to stability
    analysis of polynomial fuzzy systems," in In Proc. of the 2007
    American Control Conference, pages 4071{4076, New York, NY,
    July 2007.
    [24] K. Tanaka, H. Yoshida, \Stabilization of polynomial fuzzy systems via a sum of squares approach," in In Proc. of the 22nd Int'l
    Symposium on Intelligent Control Part of IEEE Multi-conference
    on Systems and Control, pages 160{165, Singapore, October 2007.
    [25] H. Ichihara and E. Nobuyama , \A computational approach to
    state feedback synthesis for nonlinear systems based on matrix
    sum of squares relaxations," in In Proc. 17th Int'l Symposium
    on Mathematical Theory of Network and Systems, pages 932{937,
    Kyoto, Japan, 2006.
    [26] C. W. J. Hol and C. W. Scherer, \Sum of squares relaxations for polynomial semide nite programming," in In Proc.of
    MTNS,pages 1{10, 2004.
    [27] P. A. Parrilo, \tructured Semide nite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, PhD
    thesis, Caltech, Pasadena, CA , May 2000.
    [28] K . Tanaka, H. Yoshida, H. Ohtake and H. O. Wang, \A sum
    of squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems,IEEE Trans. Fuzzy
    Systems," 17(4):911{922, August 2009.
    65
    [29] Yu-Tse Lin and Ji-Chang Lo, \SOS-based Fuzzy Controller Design -Homogeneous Polynomial Approach," 2014.
    [30] Wei-sheng Chang and Ji-Chang Lo, \SOS-Based Fuzzy Observer
    Dsigns -Homogeneous Polynomial Approach," 2014.
    [31] C. Ebenbauer, J. Renz, and F. Allgower, \Polynomial Feedback
    and Observer Design using Nonquadratic Lyapunov Functions,
    IEEE Conferece on Decision and Control, 2005
    [32] Sala, Antonio, and C. Ario. "Polynomial fuzzy models for nonlinear control: a Taylor series approach." Fuzzy Systems, IEEE
    Transactions on 17.6 : 1284-1295, 2009.
    [33] S. Prajna, A. Papachristodoulou and F. Wu, \Nonlinear control
    synthesis by sum of squares optimization: A Lyapunov-based Approach," in Proc. 5th Asian Control Conference, 2004, pp. 157{
    165.
    [34] Dan Zhao and Jian-liang Wang , \Robust static output feedback
    design for polynomial nonlinear systems", Robust Nonlinear Control 2010:1637-1654, November 2009.
    [35] Huang Wen-Chao, Sun Hong-Fei and Zeng Jian-Ping , \Robust
    Control Synthesis of Polynomail Nonlinear Systems Using Sum of
    Squares Technique", Acta Automatica Sinica, June 2013.
    [36] Kazuo Tanaka , \Polynomial Fuzzy Observer Designs A Sum-ofSquares Approach", IEEE Transactions on Systems, 2012.

    QR CODE
    :::