| 研究生: |
許敬昇 HSU CHING SHENG |
|---|---|
| 論文名稱: |
飽和濕砂中模型基樁之單向反覆軸向載重試驗 Cyclic Axial Loading Tests on Model Pile in Saturated Sand |
| 指導教授: |
黃俊鴻
Jin-Hung Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 247 |
| 中文關鍵詞: | 離岸風力發電 、模型樁 、反覆軸向載重 、殘餘位移 、等效勁度 |
| 外文關鍵詞: | offshore wind turbine, model pile, cyclic axial load, residual displacement, equivalent stiffness |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以飽和砂土試體進行模型樁受長週期反覆軸向載重試驗,以觀察樁土反覆軸向承載之互制行為,目的在模擬離岸風機套筒(Jacket)群樁基礎長期承受上部結構重量及週期性波浪作用力,對樁基礎產生週期性的垂直軸向加載力及卸載之行為,此項承載行為將造成樁基礎產生差異沉陷,使風機逐漸傾斜,影響風機系統長期運轉之穩定性。
施加反覆載重之前,需先進行靜態極限抗壓試驗,得到靜態極限抗壓力Pu。反覆樁載重試驗之初始條件為模擬風機基礎於自重作用下安全係數為3的情況,然後再進行單向反覆軸向載重試驗,總共進行6組,3組承受反覆軸向先加載後卸載型式,3組承受反覆軸向先卸載後加載型,3組反覆荷載振幅分別為1/3Pu、1/6Pu及1/12Pu,反覆作用週數依序為10000次、10000次及20000次。
綜合前人乾砂反覆載重試驗之研究結果,均顯示基樁受較大的反覆軸向振幅下,樁頭等效勁度隨著反覆作用次數衰減明顯,樁頭位移增加速率亦越大。相同振幅之先加載後卸載、先卸載後加載試驗,乾砂試驗基樁先加載後卸載型造成之殘餘位移較大,而濕砂試驗則是先卸載後加載型影響大。
In this study, a model pile is used to perform the long-term cyclic axial load tests in saturated sands, and the behavior of the pile-soil interaction is observed. In order to simulate jacket foundation of offshore wind turbine is long-term subjected to the upper structure weight and periodic wave force. The long-term cyclic axial pressure and tension forces are behaved on the pile, causing differential settlement for pile foundation and slowly tilting of the bottom of wind turbine, affecting the stability of the fan system long-term operation.
Before the cyclic load test is performed, static ultimate compressive load test is carried out, and then gets static ultimate load P_u. Loading static load 1/3 Pu initially owing to considering the static loads safety factor of the offshore wind turbine equal to 3, before the one-way cyclic axial load test carried out. A total of 6 sets cyclic axial load are carried out, 3 sets are performed cyclic compression type, and other 3 sets performed cyclic tension type. Three sets cyclic axial load amplitudes are1/3Pu, 1/6Pu and 1/12Pu respectively, and the number of cyclic cycles are 10000, 10000 and 20,000, respectively.
When comparing with previous studies done by dry sands, these are performed cyclic axial load tests show some of same results. Long-term cyclic axial load tests show that the stiffness of pile head decreases obviously owing to large of axial amplitude. And the incremental rate of pile head displacement velocity faster when axial amplitude large.
Under the tension and compression load tests of the same amplitude, the residual displacement caused by the long-term cyclic axial load tests. When cyclic axial load tests in dry sands, the residual displacement are larger in condition that first pression then tension. In contrast, where tests in saturated sands, the residual displacement are larger under the first tension then pression conditions.
第六章 參考文獻
1.內政部營建署,「建築物基礎構造設計規範」,中華民國大地工程學會,台北 (2017)。
2.王韋舜,「基樁抗壓與抗拉極限承載力之差異」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
3.林士誠,「淺談樁基礎」,台灣省土木技師公會技師報,施工技術(2017)。
4.周廷韋,「以離心模型試驗模擬基樁反覆抗壓及抗拉拔之行為」,碩士論文,國立中央大學土木工程學系,中壢(2008)。
5.施國欽,大地工程學(二)基礎工程篇,文笙書局,台北(2010)。
6.葉品毅,「煤灰地盤樁基礎承載行為之研究」,博士論文,國立中央大學土木工程學系,中壢(2015)。
7.黃俊鴻、楊志文,「基樁載重試驗承載力判釋方法之探討與建議」,地工技術雜誌,第八十期,第5~16頁(2000)。
8.陳正興、黃俊鴻,「基礎性能分析」,地工技術叢書之十一,第127~166頁(2016)。
9.陳榮波,「基樁載重試驗實務」,中華技術季刊,第68期,第127~166頁(2005)。
10.傅哲賢,「基樁抗壓與抗拉極限承載力之差異」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
11.陳思凱,「砂土中模型基樁之單向反覆軸向載重試驗」,碩士論文,國立中央大學土木工程學系,中壢(2017)。
12.American Society for Testing Materials, “Standard Test Method for Piles Under Static Axial Compressive Load.” Annual Book of Standard, ASTM D1143/D1143M-07 (2013).
13.API(2005), “2A-WSD: Recommended Practice for planning, designing and constructing fixed offshore platforms-working stress design,’’ American Petroleum Institute Recommended Practice.
14.Chan, S. F., and Hanna, T. H., “Repeated Loading on Single Piles in Sand,” Journal of Geotechnical Engineering Division, Vol. 106, No. 2, pp.171-188(1980).
15.Jardine, R. J., and Standing, J. R., “Field axial cyclic loading experiments on piles driven in sand,” Soils and Foundation, Vol. 52, pp. 723-736 (2012).
16.Long, J. H., and Vanneste, G., “Effects of Cyclic Lateral Loads on Piles in Sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 120, No. 1, pp.225-244 (1994).
17.NAVFAC Design Manual DM7.2, “Foundation and Earth Structures,” Naval Facilites Engineering Committee, Alexandria, Va (1982).
18.Saibaba Reddy, E., “An Investgation into the Response of Piles in Sand under Vertical Cyclic Tensile Loads,” University of Nottingham, UK (1996).
19.Terzaghi, K., “Evaluation of Co-efficient of Sub-grade Reaction,” Geotechnique, Institute of Engineers, Vol. 5, No. 4, London (1955).
20.Tomlinson, M. J., Pile Design and Construction Practice, 4th edition, E & FN Spon, London (1994).
21.Winterkorn, H. F., and Fang, H. Y., Foundation Engineering Handbook, Van Nostrand Reinhold Company, New York (1975).