| 研究生: |
傅崧軒 Fu, Sung-Hsuan |
|---|---|
| 論文名稱: |
智慧型手機使用者操作姿勢對於非侵入式識別機制的影響分析:基於動態方法 An Analysis of Posture Effect upon the Non-Intrusive Authentication Mechanism of Smartphones: A Dynamics-Based Approach |
| 指導教授: | 梁德容 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 非侵入式驗證機制 、使用者識別 、姿勢影響 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
智慧型手機的銷售量年年成長,而相關的安全性議題也越來越重要。為了保護智慧型手機內的資料,目前現有的智慧型手機使用者識別機制有侵入式與非侵入式兩種。傳統的驗證機制(密碼鎖、圖形鎖)屬於侵入式識別機制。非侵入式識別機制則不需要驗證介面,而是從背景收集使用者行為進行驗證。目前已有數種研究提出非侵入式識別機制,但皆採用同一姿勢進行實驗,未考慮不同姿勢造成的影響。首先本研究對不同姿勢下收集到的行為資料分析,證實不同姿勢下的資料彼此之間有顯著差異。第二部分以應用的角度而言,若混和不同姿勢的資料建模、測試的實驗與各姿勢行為資料獨立建模、測試的實驗相比準確率沒有下降很多,則可以直接忽略姿勢影響,混和各姿勢的資料進行建模。此問題將以動態方法進行實驗並根據實驗結果告知後續研究者可以直接混和各姿勢的資料進行建模、測試。最後推薦可以避免姿勢影響且實驗效果最佳的分類器。
Smartphone sales obviously grew in this years, so the associated security issues about smartphone has become more important. In order to protect the data within the smartphone, intrusive and non-intrusive user authentication mechanisms were developed. Traditional authentication mechanisms like number lock and pattern lock are intrusive user authentication mechanism. Non-intrusive user authentication mechanism doesn’t require any user interface, but collect user’s behavior in the background and authenticate it. Several non-intrusive authentication mechanisms were proposed, but all of them collected user behavior in one fixed posture. These mechanisms didn’t take posture’s effect into consideration. First, for this study, we analyze user’s behavior data in different postures and confirm that user’s behavior data has significant differences in different postures. Second, from the view of the application, if the accuracy that use mixed posture behavior data’s model to predict isn’t significantly lower than the accuracy that separately use single posture behavior data’s model to predict, we can directly neglect posture’s effect and use mixed posture behavior data’s model to predict. This problem will be discussed by doing the experiment in dynamics-based approach and then inform the future researchers that they can use mixed posture behavior data’s model to predict according to the experiment result. Finally, we recommend the best classifier that can avoid the posture’s effect and have the best prediction accuracy.
〔1〕 Gartner®, “Gartner Says Smartphone Sales Grew 46.5 Percent in Second Quarter of 2013 and Exceeded Feature Phone Sales for First Time”, available at: http://www.gartner.com/newsroom/id/2573415 (accessed 8 January 2014), 2013.
〔2〕 Gartner®, “Gartner Says Smartphone Sales Accounted for 55 Percent of Overall Mobile Phone Sales in Third Quarter of 2013”, available at: http://www.gartner.com/newsroom/id/2573415 (accessed 8 January 2014), 2013.
〔3〕 Matthew Boyle, Avraham Klausner, David Starobinski, Ari Trachtenberg, Hongchang Wu, “Gait-based User Classification Using Phone Sensors”, pp. 1-11, July 2011.
〔4〕 D. Gafurov, K. Helkala, and T. Søndrol, “Biometric Gait Authentication Using Accelerometer Sensor,” Journal of Computers, vol. 1, pp.51-59, October/November 2006.
〔5〕 Allano, L., Morris, A.C., Sellahewa, H., Garcia-Salicetti, S., Koreman, J., Jassim, S., Ly-Van, B., Wu, D. & Dorizzi, B., “Non intrusive multi-biometrics on a mobile device: a comparison of fusion techniques”, Proc. SPIE Conference on Biometric Techniques for Human Identification III, pp. 1-12, Orlando, U.S., 2006
〔6〕 M. Conti, I. Z. Zlatea, and B. Crispo, “Mind how you answer me: transparently authenticating the user of a smartphone when answering or placing a call.” In Proceedings of the 6th ACM Symposium on Information, Computer, and Communications Security, (ASIACCS '11). ACM, New York, NY, USA. pp. 249-259, March 22–24, 2011.
〔7〕 許振揚,「非侵入式多模組之手機使用者識別機制:基於動態方法」,1-39頁,2012年10月
〔8〕 Tao Feng, Ziyi Liu, Kyeong-An Kwon, Weidong Shi, Bogdan Carbunar, Yifei Jiang, Nhung Nguyen, “Continuous Mobile Authentication using Touchscreen Gestures”, In Proceedings of the 12th IEEE Conference on Technologies for Homeland Security (HST), pp. 1-6, Waltham, MA, November 2012.
〔9〕 HTC, “new HTC One Specs”, available at: http://www.htc.com/tw/smartphones/htc-one/#/ (accessed 26 January 2014), 2013.
〔10〕 Google, “Jelly-Bean”, available at: http://developer.android.com/about/versions/jelly-bean.html (accessed 26 January 2014), 2013.
〔11〕 Matthias Böhmer, Brent Hecht, Johannes Schöning, Antonio Krüger, Gernot Bauer, “Falling Asleep with Angry Birds, Facebook and Kindle - A Large Scale Study on Mobile Application Usage”, Proceedings of the 13th International Conference on Human-Computer Interaction with Mobile Devices and Services, Stockholm, Sweden, August 2011.
〔12〕 Google, “Android Document: SensorManager”, available at: http://developer.android.com/reference/android/hardware/SensorManager.html (accessed 8 January 2014)
〔13〕 X. Wu., V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, et al., “Top 10 algorithms in data mining”, Knowledge and Information Systems, vol. 14, pp. 1-37, 2008
〔14〕 Yijun Sun , Jian Li, “Iterative RELIEF for feature weighting“, Proceedings of the 23rd international conference on Machine learning, p.913-920, Pittsburgh, Pennsylvania, June 2006
〔15〕 K. Revett, H. Jahankhani, S. Magalhães, and H. Santos, “A survey of user authentication based on mouse dynamics,” Communications in Computer and Information Science (Global E-Security), vol. 12, pp. 210-219, 2008.