跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林應隆
Ying-Lung Lin
論文名稱: 以SDI與MFI指標評估工業廢水回收再利用之機會:以某散熱器製造業為例
Applying SDI and MFI to evaluate the opportunity of wastewater reuse: Taking a radiator manufacturing industry as an example
指導教授: 莊順興
Shun-Hsing Chuang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所在職專班
Executive Master of Environmental Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 101
中文關鍵詞: 回收再利用散熱器
外文關鍵詞: SDI, MFI
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討,使用實廠散熱器製造業拋光水洗水,進行實驗與研究,利用Jar-Test 與混凝劑(PACl)進行預處理,找出最佳的pH 與最佳混凝劑量,使用不同的混凝劑量來進行前處理與積垢指標試驗,來探究實廠廢水最佳回收再利用參數,可以供相同製程建置廢水回收再利用的參考。


    This study mainly discusses the use of polishing washing water in the radiator manufacturing industry of the real factory to conduct experiments and research, use Jar-Test and coagulant (PACl) for pretreatment, find out the optimal pH and optimal coagulation dosage, and use different coagulation dosages to conduct pretreatment and fouling index tests to explore the best recycling and reuse parameters of real factory wastewater, which can be used as a reference for the same process to build wastewater recycling and reuse.

    目錄 摘要 ..................................................... I ABSTRACT................................................ III 圖目錄 ................................................ VIII 表目錄 ................................................... X 第一章 緒論 .............................................. 1 1-1 研究緣起 ............................................. 1 1-2 研究目的.............................................. 3 第二章 文獻回顧 ........................................... 4 2-1 工業廢水處理技術與回收再利用 ........................... 4 2-2 薄膜程序處理........................................... 8 2-3 薄膜積垢特性與類型.................................... 18 2-4 混凝原理與操作特性.................................... 24 2-5 積垢指標............................................. 32 第三章 研究方法與材料 .................................... 38 3-1 研究方法 ............................................ 38 3-2 實驗架構內容說明 ..................................... 39 3-3 實驗設備............................................. 39 3-4 實驗材料............................................. 41 3-5 實驗方法............................................. 41 3-6 SDI計算方式與MFI紀錄方式.............................. 42 第四章 結果與討論 ........................................ 43 4-1 實驗的水質特性 ....................................... 43 4-2 預處理實驗........................................... 43 4-3 前處理實驗........................................... 47 4-4 積垢指標-SDI ........................................ 51 4-5 積垢指標-MFI ........................................ 54 第五章 結論與建議 ........................................ 61 5-1 結論 ................................................ 61 5-2 建議 ................................................ 63 參考文獻 ................................................ 64 附錄1 不同濾紙過濾原始數據................................. 67 附錄2 不同濾紙過濾濾速原始數據............................. 70 附錄3 不同濾紙過濾SDI原始數據.............................. 78 附錄4 不同濾紙過濾MFI原始數據.............................. 82

    參考文獻:
    Alhadidi, A., Kemperman, A. J., Schurer, R., Schippers, J., Wessling, M., & van der Meer, W.G. J. (2012). Using SDI, SDI+ and MFI to evaluate fouling in a UF/RO desalination
    pilot plant. Desalination, 285, 153-162.
    Allison, R. P. (1995). Electrodialysis reversal in water reuse applications. Desalination, 103(1-2), 11-18.
    Bae, T.-H., & Tak, T.-M. (2005). Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor. Journal of
    membrane science, 264(1-2), 151-160.
    Baker, R. W. (2012). Membrane technology and applications: John Wiley & Sons.Boerlage, S. F., Kennedy, M. D., Aniye, M. P., Abogrean, E., Tarawneh, Z. S., & Schippers, J.C. (2003). The MFI-UF as a water quality test and monitor. Journal of membrane science, 211(2), 271-289.
    Bowen, W., Calvo, J., & Hernandez, A. (1995). Steps of membrane blocking in flux decline during protein microfiltration. Journal of membrane science, 101(1-2), 153-165.
    Chang, J., Tsai, L., & Vigneswaran, S. (1996). Experimental investigation of the effect of particle size distribution of suspended particles on microfiltration. Water Science and
    Technology, 34(9), 133-140.
    Cheryan, M. (1998). Ultrafiltration and microfiltration handbook: CRC press.Chong, T., Wong, F., & Fane, A. (2008). Implications of critical flux and cake enhanced osmotic
    pressure (CEOP) on colloidal fouling in reverse osmosis: experimental observations.Journal of membrane science, 314(1-2), 101-111.
    Daniş, Ü., & Keskinler, B. (2009). Chromate removal from wastewater using micellar enhanced crossflow filtration: Effect of transmembrane pressure and crossflow velocity.
    Desalination, 249(3), 1356-1364.
    Dymaczewski, Z., Kempa, E. S., & Sozanski, M. M. (1997). Coagulation as a structure-forming separation process in water and wastewater treatment. Water Science and Technology,36(4), 25-32.
    Javeed, M., Chinu, K., Shon, H., & Vigneswaran, S. (2009). Effect of pre-treatment on fouling propensity of feed as depicted by the modified fouling index (MFI) and cross-flow
    sampler–modified fouling index (CFS–MFI). Desalination, 238(1-3), 98-108.
    Jutaporn, P., Cory, R. M., Singer, P. C., & Coronell, O. (2021). Efficacy of selected pretreatment processes in the mitigation of low-pressure membrane fouling and its correlation to their removal of microbial DOM. Chemosphere, 277, 130284.
    Kertész, S., László, Z., Horvath, Z. H., & Hodúr, C. (2008). Analysis of nanofiltration parameters of removal of an anionic detergent. Desalination, 221(1-3), 303-311.
    Khirani, S., Aim, R. B., & Manero, M.-H. (2006). Improving the measurement of the Modified Fouling Index using nanofiltration membranes (NF–MFI). Desalination, 191(1-3), 1-7.Koo, C. H., Mohammad, A. W., & Talib, M. Z. M. (2012). Review of the effect of selected physicochemical factors on membrane fouling propensity based on fouling indices.
    Desalination, 287, 167-177.
    Kremen, S. S., & Tanner, M. (1998). Silt density indices (SDI), percent plugging factor (% PF):their relation to actual foulant deposition. Desalination, 119(1-3), 259-262.
    Lu, W.-M., & Ju, S.-C. (1989). Selective particle deposition in crossflow filtration. Separation Science and Technology, 24(7-8), 517-540.
    Mallevialle, J., Odendaal, P. E., & Wiesner, M. R. (1996). Water treatment membrane processes:American Water Works Association.Nakatsuka, S., Nakate, I., & Miyano, T. (1996). Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination, 106(1-3), 55-61.
    Nanda, D., Tung, K.-L., Li, Y.-L., Lin, N.-J., & Chuang, C.-J. (2010). Effect of pH on membrane morphology, fouling potential, and filtration performance of nanofiltration membrane
    for water softening. Journal of membrane science, 349(1-2), 411-420.
    Nicolaisen, B. (2003). Developments in membrane technology for water treatment.Desalination, 153(1-3), 355-360.
    Park, C., Kim, H., Hong, S., & Choi, S.-I. (2006). Variation and prediction of membrane fouling index under various feed water characteristics. Journal of membrane science, 284(1-2),248-254.
    Park, C., Kim, H., Hong, S., Lee, S., & Choi, S.-I. (2007). Evaluation of organic matter fouling potential by membrane fouling index. Water Science and Technology: Water Supply,
    7(5-6), 27-33.
    Schippers, J., Kostense, A., Verdouw, J., & Folmer, H. (1982). Colloid removal by in line coagulation. Paper presented at the Proceedings of the International Symposium Water Filtration, Antwerp.Schippers, J., & Verdouw, J. (1980). The modified fouling index, a method of determining the fouling characteristics of water. Desalination, 32, 137-148.
    Shen, X., Gao, B., Guo, K., & Yue, Q. (2020). Characterization and influence of floc under different coagulation systems on ultrafiltration membrane fouling. Chemosphere, 238,124659.
    Song, L., Chen, K. L., Ong, S. L., & Ng, W. J. (2004). A new normalization method for determination of colloidal fouling potential in membrane processes. Journal of colloid
    and interface science, 271(2), 426-433.
    Song, Y., Hu, Q., Sun, Y., Li, X., Wan, H., Zang, L., . . . Gao, C. (2019). The feasibility of UFRO integrated membrane system combined with coagulation/flocculation for hairwork
    dyeing effluent reclamation. Science of the Total Environment, 691, 45-54.
    Taylor, J. S., & Jacobs, E. P. (1996). Reverse osmosis and nanofiltration. Water treatment membrane processes, 9.1-9.70.
    Weber Jr, W., & LeBoeuf, E. (1999). Processes for advanced treatment of water. Water Science and Technology, 40(4-5), 11-19.
    Wiesner, M. R., & Aptel, P. (1996). Mass transport and permeate flux and fouling in pressuredriven processes. Water treatment membrane processes, 4.1-4.30.
    台灣水環境再生協會. (2009).
    台灣地區廢污水再利用潛勢整體評估. (2003). 經濟部水利署水利規劃試驗所.
    李昆晃. (2012). 無機污泥產製再生混凝劑與其應用於廢水處理之研究. (碩士). 輔英科技大學, 高雄市. Retrieved from https://hdl.handle.net/11296/gjwq23
    林士正、楊子岳、盧文章. (2000). 薄膜程序前處理技術應用於廢水回收利用之評估.
    第五屆水再生及再利用研討會論文集.
    林士正、蔡幸芬、張振章. (1999). 以逆滲透回收再利用染整產業排放水之研究. 第二
    十四屆廢水處理技術研討會論文集.
    林何印. (2005). 超濾與逆滲透薄膜程序處理及回收工業廢水之研究. 環境工程研究所.
    林利故. (2005). 混凝劑影響薄膜積垢指標之研究. (碩士). 朝陽科技大學, 台中市.
    林哲昌. (2007). 淨水薄膜前處理程序評估與應用. 中興工程工業技術.
    邵剛. (2000). 反滲透,膜法水處理技術. 冶金工業出版社.
    孫志仁. (2014). 無機性混凝劑與生物程序放流水影響薄膜積垢指標之研究. (碩士).
    高山鎮. (2000). 薄膜阻塞控制之研究. (碩士). 國立成功大學, 台南市.
    張添晉. (2010). 水再生利用實務手冊. 台灣水環境再生協會
    黃明樟. (2001). 薄膜程序處理染整業放流水回收再利用之研究. (碩士).
    葉宣顯. (1996). 各種薄膜之分類與特性.
    劉佩嫻. (2015). 大分子有機物影響掃流式薄膜積垢指標之研究. 朝陽科技大學 環境工程與管理系.
    廢水處理常用化學藥劑應用手冊: (2006 年更新版). (2006). 經濟部工業局.
    廢水薄膜處理技術應用與推廣手冊. (2000). 經濟部工業局.
    賴世勳. (2010). 蝕刻廢液製備聚合鐵混凝劑應用於染整廢水之可行性研究. (碩士).
    環境生物技術廢水處理小組. (2002). 生物技術在廢水處理之應用.

    QR CODE
    :::