跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡安
An Hu
論文名稱: Study of Cesium Adsorption on Marine Clay and Its Application as Sealing Layer
指導教授: 田永銘
Yong-Ming Tien
土田孝
Takashi Tsuchida
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 150
中文關鍵詞: 封存層黏土混合材料銫元素吸附平流擴散方程式突破曲線
外文關鍵詞: sealing layer, clay mixture, cesium, adsorption, advection-diffusion equation, breakthrough curve
相關次數: 點閱:28下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發生於2011年3月11日的東日本大地震造成福島第一核電廠的損害,產生了許多帶有放射性銫元素的受汙染廢棄物。由於受汙染廢棄物的體積過於龐大與危險,建造離岸廢棄物掩埋場對日本政府來說是一個適當的選擇但同時也有很多條件必須被滿足。
    本研究的目的是為離岸廢棄物掩埋場的4.0公尺封存層找出適當的材料,放射性物質在封存層中的運輸方式可由平流擴散方程式呈現,為了求得方程式需要的參數: 滲透係數、擴散係數(Diffusion coefficient)與遲滯因子(Retardation factor),針對松島灣黏土與皂土和沸石的混合材料進行壓密透水試驗,將從壓密透水試驗得到的滲出液以原子吸光分析儀測驗其濃度,取得松島灣黏土混合材料對銫元素吸附性能的部分突破曲線(Breakthrough curve),以平流擴散方程式之曲線擬合求得試體之擴散係數與遲滯因子並以此資料繪製4.0公尺封存層的預測曲線。
    實驗結果顯示,混入皂土會造成銫元素吸附性能降低,而混入沸石能提高銫元素吸附性能,至於試體厚度的增加則會使得每單位重量的試體能吸附的銫元素量輕微下降。藉由針對平流擴散方程式當中的參數做參數研究,未來的實驗將能應用此模擬方法而大幅減短實驗本身的時間長度。
    在離岸廢棄物掩埋場的設計案中,封存層的厚度被設定為4.0公尺厚,而設計的內外水頭差為2.0公尺。由實驗與參數研究得到的數據進行模擬得到的結果顯示,即便將封存層厚度降為1.0公尺,由海成黏土混合材料製造的封存層仍能使滲出液的滲出時間遠大於最初的設計目標而且其放射性銫濃度遠低於日本環境省設定之標準,代表此設計方案具有可行性而且對環境來講非常安全。


    Great East Japan Earthquake on March 11th, 2011 stroke Fukushima No.1 Nuclear Power Plant and generated a huge amount of wastes contained radioactive cesium. Since the amount of radioactive waste is too large and the radioactivity is dangerous, offshore disposal facility is a good choice for Japan Government and many points should be satisfied for it.
    The purpose of this study is to find out the proper material for the 4.0-meter sealing layer of offshore disposal facilities. Contaminant transportation in porous material can be described by advection-diffusion equation. To find the parameters in equation (hydraulic conductivity, diffusion coefficient and retardation factor), Matsushima Bay Clay mixed with bentonite and zeolite is tested by consolidation-permeability test. The cesium concentration of leachate from consolidation-permeability test was measured by atomic absorption spectrophotometer. In this way, the part of breakthrough curve of Matsushima Bay Clay mixture can be measured. Use curve fitting method to find out the parameters in advection-diffusion equation and make prediction of 4.0-meter sealing layer.
    Test result shows that bentonite makes cesium adsorption ability worse while zeolite make it better. Thickness increasing makes adsorbed cesium amount per sample mass slightly lower. By doing parameter study of advection-diffusion equation, the length of laboratory test in the future can be shorten by using simulation.
    In the offshore disposal facility design, sealing layer is 4.0-meter-thick and water head difference is 2.0 meter. Simulation shows that even the thickness of sealing layer decrease to 1.0-meter, sealing layer made by marine clay can still make the leakage time of radioactive cesium leachate far longer and cesium concentration quite lower than standard established by Japan Ministry of Environment, which means this design is feasible and very safe.

    1. INTRODUCTION……………………………………………………………………………………1 1.1 Motivation and Purpose…………………………………………………………1 1.2 Research Targets…………………………………………………………………………2 1.3 Contents Introduction……………………………………………………………2 2. LITERATURE REVIEW………………………………………………………………………5 2.1 Basic Information and Assumptions about Radioactive Wastes…………………………………………………………………………………………5 2.2 Design Targets………………………………………………………………………………9 2.2.1 Assumptions…………………………………………………………………9 2.2.2 Calculations………………………………………………………………10 2.3 Hydraulic Conductivity Experiment……………………………12 2.4 Basic Knowledge of Solute Transport Behavior in Soil……………………………………………15 3. INSTRUMENT AND PROCEDURE……………………………………………………18 3.1 Introduction of Experiment………………………………………………18 3.2 Introduction of Materials…………………………………………………19 3.3 Preparation of Soil Samples……………………………………………22 3.4 Preparation of Stable Cesium Solution…………………………………24 3.5 Consolidation-Permeability Test…………………………………25 3.6 Concentration Measuring………………………………………………………27 4. ADSORPTION ABILITY……………………………………………………………………29 4.1 Introduction……………………………………………………………………………………29 4.2 Results Analysis Description…………………………………………30 4.3 Influence of Mixing Material…………………………………………32 4.3.1 Matsushima Bay Clay Samples (Present Cases) …………………………………32 4.3.2 Comparison with Previous Samples…………35 4.4 Concentration Changing with Time………………………………45 5. INFLUENCE of PENETRATION DISTANCE……………………………48 5.1 Introduction and Motivation……………………………………………48 5.2 Research Method……………………………………………………………………………49 5.3 Test Results……………………………………………………………………………………50 6. PARAMETRIC STUDY…………………………………………………………………………58 6.1 Introduction……………………………………………………………………………………58 6.2 Determination of Parameters……………………………………………60 6.2.1 Parameters Obtained from Various Thickness……………………………60 6.2.2 The Effects of Bentonite Amount on Parameters…………………………63 6.2.3 The Effects of Zeolite Ratio on Parameters…………………………66 6.2.4 Result Analysis of Parameters…………………68 6.3 Parametric Studies of Breakthrough Curve………………………………………73 6.3.1 Influence of hydraulic gradient to breakthrough curve…………………75 6.3.2 Influence of diffusion coefficient to breakthrough curve…………………79 6.3.3 Influence of retardation factor to breakthrough curve…………………83 6.4 Summary…………………………………………………………………………………………………85 7. FIELD PREDICTION…………………………………………………………………………87 7.1 Motivation…………………………………………………………………………………………87 7.2 Simulation Method………………………………………………………………………87 7.3 Comparison of Marine Clay…………………………………………………89 7.4 4.0-Meter Thickness Simulation of Matsushima Bay Clay Mixtures………………………………91 7.5 4.0-Meter Thickness Simulation of Other Marine Clay Mixtures………………………………93 7.6 Simulation of Different Thickness Sealing Layer of Matsushima Bay Clay Mixtures………………………………………………………98 7.7 Peak Value of Relative Concentration and Time of peak concentration…………………104 7.8 Upper Limitation and Lower Limitation Consideration………………………………106 8. CONCLUSIONS………………………………………………………………………………………108 REFERENCE ………………………………………………………………………………………………109 APPENDIX ………………………………………………………………………………………………112

    1. Adachi, K., “Research of Maintenance Management of Waste Buried Revetment,” Kyoto University, Japan, PhD thesis, 2014. (in Japanese)
    2. Daniel, David Edwin, ed. “Geotechnical practice for waste disposal,” Springer Science & Business Media, pp.33-65, 2012.
    3. Endo, S., Tsuchida, T., & Takahashi, G., “Research of Necessary Strength and Consolidation Coefficient of Bottom Sealing Layer of Offshore Disposal Facility,” Japanese Society of Civil Engineering, 2016. (in Japanese)
    4. International Atomic Energy Agency, “Radiological consequences,” The Fukushima Daiichi Accident, Vol. 4, pp. 5-21, Australia, 2015.
    5. Japan Ministry of the Environment, Guideline of Relationship of Radioactive Wastes, 2013. (in Japanese)
    6. Katsumi, T., “Foundation and Analysis Method of Geotechnical Environment Contaminant,” engineering-eye, web seminar, 2015, from http://www.engineering-eye.com/rpt/w010_katsumi/index.html. (in Japanese)
    7. Murakami, H., “Research of shaded and water shielding structure of coastal disposal facility with radioactive cesium waste,” Hiroshima University, Master thesis, Japan, 2014. (in Japanese)
    8. Murakami, H., Tsuchida, T., & Katayama, Y., “Study of Geo-material Used for Coastal Disposal Facilities for Waste Including Cesium,” Memoir of Committee on Civil Engineering in the Ocean, Vol. 70, No.2, I_846-I_851, 2014.
    9. Miura, T., Shibata, K., Kotake, S., & Tsuzi. H., “Cesium Adsorption Test of Bentonite from Ash Leachate,” 50th Japan National Conference on Geotechnical Engineering, 2015. (in Japanese)
    10. Nakao, A., “Movement of radioactive mater in the soil,” Newest agriculture technical – soil fertilization Vol.4., 2012. (in Japanese)
    11. Ozawa, K., Takemura, Z. and Kusakabe, O., “Measurement of Diffusion Coefficient in Clay by Column Test,” Journal of JSCE, Vol.708, pp.79-96, Japan Society of Civil Engineers, 2002. (In Japanese)
    12. Science and Technology Agency, 2000. Pronouncement to determine the quantity of isotope emitting radiation, Pronouncement No.5, revised in March, 2013 as Ministry of Education, Culture, Sports, Science and Technology Pronouncement No. 58.
    13. Takahashi, G., Tsuchida, T., & Murakami, H., “Development of sealing Material from marine clay mixed with zeolite and bentonite,” International Conference on Civil and Environmental Engineering 2015, 2015.
    14. Takahashi, G., “Research of Designing and Construction of Coastal Sealing Geotechnical Material using Dredged Clay Mixed with Bentonite, Sand and Zeolite,” Hiroshima University, Japan, Master thesis, 2017. (in Japanese)
    15. Tsuchida, T., Murakami, H., Kurihara, O., Athapaththu, A. M. R. G., Tanaka, Y., & Ueno, K. “Geotechnical sealing material for coastal disposal facility for soils and wastes contaminated by radioactive cesium,” Marine Georesources & Geotechnology, pp.1-15, 2016.
    16. Ueno, K., Yamada, K., & Watabe, Y., “The Proposal of Geotechnical Sealing Material by Dredged Clay for Management Type Offshore Waste Disposal Facility,” Journal of JSCE, Vol. 64, No.2, pp.177-186, 2008. (in Japanese)
    17. Van Genuchten, M. Th, and W. J. Alves. Analytical solutions of the one-dimensional convective-dispersive solute transport equation, No. 157268. United States Department of Agriculture, Economic Research Service, 1982.
    18. Watabe, Y., Yamada, K., & Saitoh, K., “Hydraulic conductivity and compressibility of mixtures of Nagoya clay with sand or bentonite,” Geotechnique, Vol.61, No.3, pp.211-219, 2011.
    19. Waterfront Vitalization and Environment Research Foundation, Designing Guideline of Management Type Waste Reclamation Revetment, 2008.
    20. Wexler, Eliezer J. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, US Government Printing Office, 1992.

    QR CODE
    :::