| 研究生: |
張凱傑 Kai-chieh Chang |
|---|---|
| 論文名稱: |
光激發額外載子於太陽能電池內空間分佈之二維軸對稱與二維線對稱物理參數模擬 The physical parameters simulation of the distribution of the excess carrier in solar cells with two-dimensional axial symmetry and line symmetry |
| 指導教授: |
鍾德元
Te yuan Cung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 太陽能電池 、矽晶圓 、光致發光 、額外載子生命期 |
| 外文關鍵詞: | solar cell, wafer, photoluninescence, excess carrier lifetime |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用額外載子速率方程式(rate equation)與柏松方程式(Poisson’s equation)耦合,利用有限元素分析法得到額外載子於矽晶圓與太陽能電池之額外載子的空間分佈,從額外載子的空間分佈可以得到螢光與電場內部的分佈,再藉由著邊界條件的設定,控制太陽能電池電流的輸出以及整體額外載子生命期,可以得到電流與電壓曲線與額外載子生命期的關係,同時可藉由著額外載子生命期於空間上的分佈,模擬光致發光法缺陷對於螢光分佈影響,最後從模擬出來的缺陷影響螢光結果可推算缺陷影響螢光的點擴散方程,點擴散方程即可利用摺積的方式快速地得到缺陷對螢光的影響。
In this study, with the rate equation of excess carrier Poisson’s equation and finite element method, the distribution of excess carrier in wafers and solar cells can be obtained. By the obtained the distribution of excess carrier, the distribution of photoluminescence and electric field can be solved. With changing the boundary setting, the current output can be controlled and the J-V curve in different excess carrier lifetime can be obtained. Also, how a defect influence photoluminescence can be simulated by setting the distribution of excess carrier lifetime. The result of simulation can be written as point spread which can quickly obtain how a defect influences PL by convolution.
參考文獻
[1] N. R. E. Laboratory, "Best Research-Cell Efficiencies."
[2] PVCDROM. Measurement of Solar Cell Efficiency. Available: http://pveducation.org/pvcdrom/characterisation/measurement-of-solar-cell-efficiency
[3] A. G. Chynoweth and K. G. McKay, "Photon Emission from Avalanche Breakdown in Silicon," Physical Review Letters, vol. 102, pp. 356-376, 1956.
[4] O. Breitenstein, J. P. Rakotoniaina, and M. H. A. Rifai, "Quantitative evaluation of shunts in solar cells by lock-in thermography," Progress in Photovoltaics: Research and Applications, vol. 11, pp. 515-526, 2003.
[5] N. Khurana and C.-L. Chiang, "Analysis of Product Hot Electron Problems by Gated Emission Microscop," IEEE, pp. 189-194, 1986.
[6] T. Trupke, E. Daub, and P. Wurfel, "Absorptivity of silicon solar cells obtained from luminescence," Solar Energy Materials and Solar Cells, vol. 53, pp. 103-114, 1998.
[7] O. Breitenstein, M. Langenkamp, O. Lang, and A. Schirrmacher, "Shunts due to laser scribing of solar cells evaluated by highly sensitive lock-in thermography," Solar Energy Materials and Solar Cells, vol. 65, pp. 55-62, 1// 2001.
[8] M. D. Abbott, J. E. Cotter, F. W. Chen, T. Trupke, R. A. Bardos, and K. C. Fisher, "Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells," Applied Physics Letters, vol. 100, 2006.
[9] T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, and Y. Uraoka, "Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence," Applied Physics Letters, vol. 86, 2005.
[10] I. Tarasov, S. Ostapenko, K. Nakayashiki, and A. Rohatgi, "Defect passivation in multicrystalline silicon for solar cells," Applied Physics Letters, vol. 85, pp. 4346-4348, 2004.
[11] I. Tarasov, S. Ostapenko, V. Feifer, S. McHugo, S. V. Koveshnikov, J. Weber, et al., "Defect diagnostics using scanning photoluminescence in multicrystalline silicon," Physica B: Condensed Matter, vol. 273-274, 1999.
[12] T. Trupke, E. Pink, R. A. Bardos, and M. D. Abbott, "Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging," Applied Physics Letters, vol. 90, pp. 093506-093506-3, 2007.
[13] 鍾穎昌, "以螢光訊號量測單晶矽太陽能電池物理參數之空間分佈," 碩士, 照明與顯示科技研究所, 國立中央大學, 2010.
[14] S. Ostapenko, I. Tarasov, J. P. Kalejs, C. Haessler, and E.-U. Reisner, "Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon wafers," Semiconductor Science and Technology, vol. 15, pp. 840-848, 2000.
[15] 杜羿嶢, "以光激發螢光預測晶圓製成太陽能電池之效率," 碩士, 照明與顯示科技所, 中央大學, 2013.
[16] WIKIPEDIA. Beer Lambert law. Available: http://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law
[17] PVCDROM. Manufacturing Si cells. Available: http://pveducation.org/pvcdrom
[18] D. A. Neamen, Ed., An Introduction to Semiconductor Devices (半導體元件概論 初版). 台北市: 美商麥格羅・希爾國際股份有限公司台灣分公司, 2007.
[19] D. A. Neamen, Ed., Semiconductor Physics & Devices (半導體物理及元件 第三版). 台北市: 美商麥格羅・希爾國際股份有限公司台灣分公司, 2006.
[20] WIKIPEDIA. Poisson's equation. Available: http://en.wikipedia.org/wiki/Poisson's_equation
[21] J. I. Pankove, OPTICAL PROCESSES INSEMICONDUCTORS. New York: Dover, 1971.
[22] K. Rajkanan, R. Singh, and J. Shewchun, "Absorption coefficient of silicon for solar cell calculations," Solid-State Electronics, vol. 22, pp. 793-795, 9// 1979.
[23] D. M. Caughey and R. E. Thomas, "Carrier mobilities in silicon empirically related to doping and field," IEEE, vol. 55, pp. 2192-2193, 1967.
[24] B. V. Zeghbroeck. (2011). Principles of Semiconductor Decices. Available: http://ecee.colorado.edu/~bart/book/book/append/quick.htm
[25] 褚聖麟, 原子物理學: 高等教育出版社.
[26] R. A. Sinton and R. M. Swanson, "Recombination in highly injected silicon," Electron Devices, IEEE Transactions on, vol. 34, pp. 1380-1389, 1987.
[27] P. P. Altermatt, R. A. Sinton, and G. Heiser, "Improvements in numerical modelling of highly injected crystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 65, pp. 149-155, 1// 2001.
[28] A. Beiser, Concepts Of Modern Physics: McGraw-Hill Education (India) Pvt Limited, 2003.
[29] T. Trupke, M. A. Green, P. Wurfel, P. P. Altermatt, A. Wang, J. Zhao, et al., "Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon," Journal of Applied Physics, vol. 94, pp. 4930-4937, 2003.
[30] WIKIPEDIA. Finite element method. Available: http://en.wikipedia.org/wiki/Finite_element_method
[31] H. Föll. Semiconductors I. Available: http://www.tf.uni-kiel.de/matwis/amat/semi_en/