| 研究生: |
郭明峰 Ming-Feng Kuo |
|---|---|
| 論文名稱: |
皂土-碎石混合物之壓實性質 The compaction properties of bentonite-crushed rock mixtures |
| 指導教授: |
田永銘
Yong-Ming Tien 黃偉慶 Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 緩衝材料 、膨潤土 、壓實 、壁面摩擦力 、壓縮曲線 |
| 外文關鍵詞: | Wall fraction, Bentonite, Compaction, Compaction curve, Buffer material |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高放射性廢料於地下深層處置中常利用緩衝材料阻隔放射性核種外移,目前之候選緩衝材料以膨潤土為首要考慮對象。目前世界各國主要以單軸壓實法製作緩衝材料塊體,因壓實過程中材料與壓實模具間會產生壁面摩擦力,故無法有效獲得塊體實際壓實應力與密度之關係。故本研究依據瑞典單軸壓實法之概念,及直接量測法量測壁面摩擦力之方式設計壓實模具,進行不同膨潤土重量壓實試驗,並利用Gurnham提出之壓縮方程式,求取膨潤土無摩擦力影響之壓縮曲線。
同時針對可能影響壓實行為之因素進行分析探討。最後利用Tien等人(2004)所提出膨潤土-碎石混合物壓縮曲線之預測方法,預測純膨潤土添加不同體積比之花崗岩碎石及矽砂時的壓縮曲線。
Buffer materials are used to retard the migration of radionuclides emitted from high level wastes in a repository. Bentonite is the primary candidate for the buffer materials at the present day. The uniaxial compaction method is generally used to produce the bentonite block. The wall friction is produced between the materials and the compaction mold during the compaction process, so we can’t obtain the relationship between the actual compaction stress and the density of the bentonite block. The first target for this study is to search the literature of compaction techniques for buffer materials. Designing the compaction mold according to the concept of uniaxial compaction method. Adopting the direct method to measure the wall friction during bentonite block compaction and ejection. Using the compression equation developed by Gurnham to obtain the friction-free compressive curve of bentonite block. To analyze and discuss the effects that will influence the compaction behavior. To examine the effect of crushed rock content on the compaction characteristics, a series of uniaxial compaction tests for bentonite-crushed rock mixtures with different sand fractions (by weight) were performed. A prediction model based on micromechanics for predicting the compaction curves of bentonite-crushed rock mixtures was proposed by Tien et al. (2004).
[1] 田永銘,「緩衝材料之壓實性質與其特性初步探討」,行政院原子能委員會委託研究計畫研究報告,中壢(2003)。
[2] 邱太銘,放射性廢棄物管理,中興工程科技研究發展基金會,台北(2002)。
[3] 莊文壽、洪錦雄、董家寶,「深層地質處置技術之研究」,核研季刊,第三十七期,第44-54頁(2000)。
[4] 譚建國、王永明,多相複合材料之微分模式 I.整體彈性係數,中國工程學刊,第六卷,第二期,pp. 73-82 (1983)。
[5] Adams, M. J., McKeown, R., “Mocromechanical analysis of the pressure-volume relationships for powders under confined uniaxial compression,” Powder Technology, Vol. 88, pp. 155-163 (1996).
[6] Boonsinsuk, P., Pulles, B. C., Kjartanson, B. H., and Dixon, D. A., “Prediction of compactive effort for a bentonite-sand mixture,” 44th Canadian Geotechnical Conference Volume 2, Alberta, Canada, pp. 64.1-64.12 (1991).
[7] Briscoe, B. J., and Rough, S. L., “The effects of wall friction in powder compaction,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol, 137, pp. 103-116 (1998).
[8] Chinh, P. D., “Weighted self-consistent approximations for elastic completely random mixtures,” Mechanics of Materials, Vol. 32, pp. 463-470 (2000).
[9] Christensen, R. M., “A critical evaluation for a class of micromechanics models,” J. Mech. Phys. Solids, Vol. 38, No. 3, pp. 379-404 (1990).
[10] Denny, P. J., “Compaction equations : a comparison of the Hechel and Kawakita equations,” Powder Technology, Vol. 127, pp. 162-172 (2002).
[11] Figliola, R. S., and Beasley, D. E., Theory and design for mechanical measurements. John Wiley & Sons, U. S. (1995).
[12] Guyoncourt, D. M. M., Tweed, J. H., Gough, A., Dawson, J., and Pater, L., “Constitutive data and friction measurements of powders using instrumented die.” Powder Metallurgy, Vol. 44, No. 1, pp. 25-33(2001).
[13] Hashin, H., “Analysis of composite materials–A Survey,” Journal of Applied Mechanics. Vol. 50, pp. 481-505 (1983).
[14] Japan Nuclear Cycle Development Institute, Repository design and engineering technology. JNC Supporting Report 2, Japan (1999).
[15] Johannesson, L. E., Börgesson, L., Sanden, T., Compaction of bentonite blocks – development of technique for industrial production of blocks which are manageable by man. SKB technical report TR 95-19, Swedish (1995).
[16] Johannesson L. E., Compaction of full size blocks of bentonite for the KBS-3 concept – initial tests for the evaluating the technique. SKB technical report R 99-66, Swedish (1999).
[17] Johannesson, L. E., Nord, S., Pusch, R., Sjöblom, R., Isostatic compaction of beaker shaped bentonite blocks on the scale 1:4. SKB technical report TR 00-14, Swedish (2000).
[18] Klemm, U., Sobek, D., Schone, B., and Stockmann, J., “Friction measurements during dry compaction of silicon carbide,” Journal of the European Ceramic Society, Vol. 17, pp. 141-145(1997).
[19] Li, Y., Liu, H., Rockabrand, A., “Wall friction and lubrication during compaction of coal logs,” Powder technology, Vol. 87, pp.259-267 (1996).
[20] Macleod, H. M., and Marshall, K., “The Determination of density distribution in ceramic compacts using autoradiography,” Powder Technology, Vol. 16, pp. 107-122(1977).
[21] Marcial, D., Delage, P., and Cui, Y. J., “On the high stress compression of bentonites,” Canadian Geotechnical Journal, Vol. 39, pp. 812-820 (2002).
[22] Mclaughlin, R., “A study of the differential scheme for composite materials,” Int. J. Engng. Sci. Vol. 15, pp. 237-244 (1977).
[23] Michel, J-C., “A self-consistent estimate of the non-linear properties of isotropic two-phases composites,” Vol. 58, pp. 753-758 (1998).
[24] Nemat-Nasser, S., Hori, M., Micro-mechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam (1993).
[25] Nedderman, R. M., Statics and kinematics of granular materials. Cambridge University Press, U.K (1992).
[26] Norris, A. N., “A differential scheme for the effective moduli of composites,” Mechanics of materials, Vol. 4, pp. 1-16 (1985).
[27] Omine, K., Ochiai, H., and Yoshida, N., “Estimation of in-situ strength of cement-treated soils based on a two-phase mixture model,” Soils and foundations. Vol. 38, No. 4, pp. 17-29 (1998).
[28] Panelli, R., Filho, F. A., “A study of a new phenomenological compacting equation,” Powder Technology, Vol. 114, pp. 255-261 (2001).
[29] Roure, S., Bouvard, D., Doremus, P., and Pavier, E., “Analysis of die compaction of tungsten carbide and cobalt powder mixtures,” Powder Metallurgy, Vol. 42, No. 2, pp. 164-170(1999).
[30] Stanley-Wood, N. G., Enlargement and compaction of particulate solids, Butterworths, U.K. (1983).
[31] Tien, Y. M., Wu, P. L., Chuang, W. S., and Wu, L. H., “Micromechanical Model for Compaction Characteristics of Bentonite-Sand Mixtures,” Applied Clay Science (accepted).
[32] Tien, Y. M., Wu, P. L., and Kuo, M. F., “The measuring method for wall friction during bentonite block compaction and ejection,” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, Roc, pp. 187-194(2004).
[33] W. L. wardrop & Associates Ltd, Buffer and backfilling systems for a nuclear fuel waste disposal vault. AECL technical record TR-341, Canada (1985).
[34] Wu, T. T., “The effect of inclusion shape on the elastic moduli of a two-phase material,” Int. J. Solids Structure, Vol. 2, pp. 1-8 (1966).
[35] Yong, R. N., Boonsinsuk, P., and Wong, G., “Formulation of backfill material for nuclear fuel waste disposal valut,” Canadian Geotechnical Journal, Vol. 23, pp. 216-228(1986).
[36] Zhao, X. H., Chen, W. F., “The effective elastic moduli of concrete and composite materials,” Composites Part B, Vol. 29B, pp. 31-40 (1998).