跳到主要內容

簡易檢索 / 詳目顯示

研究生: 翟予若
Yu-Jo Chai
論文名稱: 蜂擁菌群中被動粒子統計特性之實驗研究
Experimental study of statistical properties of passive tracers in swarming bacterial bath
指導教授: 田溶根
Yonggun Jun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 49
中文關鍵詞: 異常擴散非高斯擴散異質性蜂擁自推進粒子
外文關鍵詞: Anomalous diffusion, Non-Gaussian diffusion, Heterogeneity, Swarming, Self-propelled particle
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細菌在固體表面以側鞭毛移動的運動模式稱為蜂擁,蜂擁中的細菌具有集體運動和類流體的行為。而在蜂擁菌群中,擴散是主要傳遞化學和營養物質等被動粒子的途徑。由於蜂擁中的溶藻弧菌具有類似蛇的特殊型態和前後來回的運動,我們在此研究被動粒子在蜂擁溶藻弧菌菌群中的運動。
    在此論文中,我們培養出了二維的蜂擁溶藻弧菌,並加入1 微米的聚苯乙烯作為被動粒子。根據聚苯乙烯粒子的運動軌跡,我們計算出方均根位移和在給定時差下位移的機率密度函數。方均根位移和位移的機率密度函數顯示出此蜂擁菌群為被動粒子運動中兩種雜訊的來源。其中一種雜訊對應到粒子的線性運動模式,此模式具有較長的持久長度和較短的相關時間;而另一種雜訊則對應到粒子的擾動模式,此模式則有較短的持久長度和較長的相關時間。我們因此建立了結合兩個
    奧恩斯坦-烏倫貝克過程的模型來解釋被動粒子的運動。最後,藉由比較粒子移動方向和粒子相鄰細菌的長軸方向,我們歸納出線性運動發生在當粒子直接被整齊排列的細菌推動時;而粒子的擾動則是由於細菌的隨機排列。


    Swarming bacteria, migrating on the solid surface with lateral flagella, show collective motion and fluid-like behavior. In the swarming bacteria motility, diffusion becomes a main process to deliver cargoes like chemicals or nutrients. Here, we investigate the dynamics of passive tracers in the swarming Vibrio alginolyticus bath, because Vibrio alginolyticus has the particular properties such as the snake-like morphology, and forward and backward motion.
    In this work, we build up a two-dimensional swarming Vibrio alginolyticus bath with 1 μm polystyrene beads. From the trajectories of polystyrene beads, we calculate
    the mean squared displacement (MSD) and the probability density function (PDF) of the displacement of a single particle at the given time lag. The MSD and PDF reveal that the swarming bath is the source of two noises on passive tracers. One type of the noises, the linear motion, has long persistence length but short correlation time, and the other, the fluctuating motion, has short persistence length
    but long correlation time. We model this phenomenon as two combined Ornstein-Uhlenbeck process. Finally, by comparing the particle direction to the averaged long-axis direction of neighbor bacteria, we find that the linear motion is resulted from the direct pushing by the spatially well-aligned bacteria and the fluctuating motion is due to the random orientation of bacteria.

    Abstract iii Acknowledgements v 1 Introduction 1 2 Theoretical background 5 2.1 From Brownian motion to Fickian diffusion . . . . . . . . . . . . . . . . 5 2.2 Diffusion of passive tracers in swimming bacterial bath . . . . . . . . . 7 2.3 Dynamics of swarming bacterium . . . . . . . . . . . . . . . . . . . . . 8 3 Experimental and analytical method 11 3.1 Vibrio alginolyticus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Swarm plate preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.1 Bacteria culture process . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.2 Preparation of swarming motility on the agar plate . . . . . . . 12 3.3 Swarm plate observation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.1 Phase-contrast microscopy . . . . . . . . . . . . . . . . . . . . . 15 3.3.2 Observation region in swarming motility . . . . . . . . . . . . . 17 3.4 Single particle tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Results and discussions 21 4.1 Anomalous yet non-Gaussian diffusion . . . . . . . . . . . . . . . . . . 21 4.2 Auto-correlation of diffusivity of passive tracers . . . . . . . . . . . . . 22 4.3 MSD with two correlation time . . . . . . . . . . . . . . . . . . . . . . . 24 4.4 Two states motion in PDFs of displacement . . . . . . . . . . . . . . . . 26 4.5 Origin of two states motion in swarming motility . . . . . . . . . . . . 28 5 Conclusions 31 Bibliography 33

    1. Wikipedia contributors. Swarm behaviour—Wikipedia, The Free Encyclopedia [Online;
    accessed 17-July-2020]. 2020. https://en.wikipedia.org/w/index.
    php?title=Swarm_behaviour&oldid=965506737.
    2. Narayan, V., Ramaswamy, S. & Menon, N. Long-lived giant number fluctuations
    in a swarming granular nematic. Science 317, 105–108 (2007).
    3. Sumino, Y. et al. Large-scale vortex lattice emerging from collectively moving
    microtubules. Nature 483, 448–452 (2012).
    4. Szabo, B. et al. Phase transition in the collective migration of tissue cells: experiment
    and model. Physical Review E 74, 061908 (2006).
    5. Henrichsen, J. Bacterial Surface Translocation: a Survey and a Classification tech.
    rep. 4 (1972), 478–503.
    6. Harshey, R. M. Bacterial Motility on a Surface: ManyWays to a Common Goal.
    Annual Review of Microbiology 57, 249–273. ISSN: 0066-4227 (2003).
    7. Berg H Anderson, R. Bacteria swim by rotating their flagellar filaments. Nature
    (1973).
    8. Kearns, D. B. A field guide to bacterial swarming motility Sept. 2010.
    9. Partridge, J. D. & Harshey, R. M. Swarming: Flexible roaming plans. Journal of
    Bacteriology 195, 909–918. ISSN: 00219193 (2013).
    10. Butler, M. T., Wang, Q. & Harshey, R. M. Cell density and mobility protect
    swarming bacteria against antibiotics. Proceedings of the National Academy of Sciences
    of the United States of America 107, 3776–3781. ISSN: 00278424 (2010).
    11. Copeland, M. F. &Weibel, D. B. Bacterial swarming: a model system for studying
    dynamic self-assembly. Soft Matter 5, 1174–1187. http://dx.doi.org/
    10.1039/B812146J (6 2009).
    12. Rauprich, O. et al. Periodic phenomena in Proteus mirabilis swarm colony development.
    Journal of Bacteriology 178, 6525–6538. ISSN: 00219193 (1996).
    13. Ariel, G. et al. Swarming bacteria migrate by LévyWalk. Nature Communications
    6. ISSN: 20411723 (2015).
    14. Be’er, A. & Harshey, R. M. Collective motion of surfactant-producing bacteria
    imparts superdiffusivity to their upper surface. Biophysical Journal 101, 1017–
    1024. ISSN: 00063495. http://dx.doi.org/10.1016/j.bpj.2011.07.
    019 (2011).
    15. Lin, S. N., Lo, W. C. & Lo, C. J. Dynamics of self-organized rotating spiral-coils
    in bacterial swarms. Soft Matter 10, 760–766. ISSN: 1744683X (Feb. 2014).
    16. Zhang, H. P., Be’Er, A., Smith, R. S., Florin, E. L. & Swinney, H. L. Swarming
    dynamics in bacterial colonies. Epl 87. ISSN: 02955075 (2009).
    17. Damton, N. C., Turner, L., Rojevsky, S. & Berg, H. C. Dynamics of bacterial
    swarming. Biophysical Journal 98, 2082–2090. ISSN: 15420086. http://dx.doi.
    org/10.1016/j.bpj.2010.01.053 (2010).
    18. Chen, X., Dong, X., Be’Er, A., Swinney, H. L. & Zhang, H. P. Scale-invariant
    correlations in dynamic bacterial clusters. Physical Review Letters 108, 1–5. ISSN:
    00319007 (2012).
    19. Böttcher, T., Elliott, H. L. & Clardy, J. Dynamics of Snake-like Swarming Behavior
    of Vibrio alginolyticus. Biophysical Journal 110, 981–992. ISSN: 0006-3495.
    https://www.sciencedirect.com/science/article/pii/S0006349516000448?
    via%3Dihub (Feb. 2016).
    20. Be’er, A., Strain, S. K., Hernández, R. A., Ben-Jacob, E. & Florin, E. L. Periodic
    reversals in Paenibacillus dendritiformis swarming. Journal of Bacteriology 195,
    2709–2717. ISSN: 00219193 (2013).
    21. Wu, X. L. & Libchaber, A. Particle diffusion in a quasi-two-dimensional bacterial
    bath. Phys. Rev. Lett. 84, 3017–20. ISSN: 0031-9007. http://www.ncbi.
    nlm.nih.gov/pubmed/11177879 (2000).
    22. Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I. & Goldstein, R. E. Dynamics
    of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms.
    Physical Review Letters 103, 1–4. ISSN: 00319007 (2009).
    23. Wang, B., Kuo, J., Bae, S. C. & Granick, S. When Brownian diffusion is not Gaussian.
    Nature Materials 11, 481–485. ISSN: 1476-1122. http://dx.doi.org/10.
    1038/nmat3308 (2012).
    24. Moriarty, P. The fluctuation-dissipation theorem. Rep. Prog. Phys. 64, 297–381
    (2001).
    25. Tsallis, C., Levy, S. V. F., Souza, A. M. C. & Maynard, R. Statistical-Mechanical
    Foundation ofthe Ubiquity ofLevy Distributions in Nature. 75, 3589–3593 (1995).
    26. Frey, E. & Kroy, K. Brownian motion: A paradigm of soft matter and biological
    physics. Annalen der Physik (Leipzig) 14, 20–50. ISSN: 00033804 (2005).
    27. Golten, C. & Scheffers, W. Marine vibrios isolated from water along the Dutch
    coast. Netherlands Journal of Sea Research 9, 351–364 (1975).
    28. Tinevez, J.-Y. et al. TrackMate: An open and extensible platform for singleparticle
    tracking. Methods 115, 80–90 (2017).
    29. Chubynsky, M. V. & Slater, G.W. Diffusing diffusivity: A model for anomalous,
    yet Brownian, diffusion. Physical Review Letters 113, 1–5. ISSN: 10797114 (2014).

    QR CODE
    :::