跳到主要內容

簡易檢索 / 詳目顯示

研究生: 牟妍樺
Yan-hua Mou
論文名稱: 低放處置場混凝土工程障壁受 氯離子侵襲之服務年限信賴度研究
nono
指導教授: 黃偉慶
Wei-hsing Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 123
中文關鍵詞: 氯離子門檻值信賴度
外文關鍵詞: chloride ions, threshold, Reliability
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低放射性廢棄物處置設施之障壁主要是由混凝土構成,但不同於一般混凝土結構物之用途,其服務年限需長達數百年之久。由於台灣處於四面環海環境,低射性廢棄物處置場之場址可能位於濱海區域,處置場障壁混凝土若長期處於此環境下,預估混凝土的服務年限非常重要。
    本研究主要探討混凝土材料受氯離子入侵之劣化情形,並使用氯離子濃度門檻值與擴散係數,用於經驗公式中,來預估氯離子入侵達保護層時的濃度。以可能使用於高完整性容器之HIC 配比與傳統配合設計方法ACI 配比,進行信賴度分析。
    針對鋼筋開始腐蝕之時間建立服務年限信賴度分析模式。考慮混凝土水化程度隨時間增長而使擴散係數降低,歷時越長擴散係數趨於穩定,利用較長歷時推估擴散行為之時間因子時,其數據變異性較低,可提高推估服務年限之精確性。低放處置場混凝土推估方面,依氯離子長期擴散係數與規範之保護層厚度,可預估鋼筋腐蝕之時間。在規範保護層厚度下,傳統ACI配比受氯離子入侵於假定服務年限300年時,其服務成效低於HIC配比。


    The barriers of facilities which dispose wastes with low radioactivity are mainly composed of concrete, but unlike the normal purpose of concrete, it should be used for more than several hundred years. However, due to Taiwan’s geographic feature- island, the sites of such facilities are mostly placed in marine environment, which will cause immense influences on the degradation and durability of concrete over a long period of time.
    This research aims on studying the degradation level of concrete while percolated by chloride ions, through using diffusion coefficient and threshold chloride concentration in empirical formulas, along with doing relative tests and analyses with HIC, ACI, to predict the time when reinforcing steel starts to be corroded.
    Establish the reliable analysis model of the service life for the propagation time of the reinforcement in concrete. The higher time-dependent hydration, the lower diffusion coefficient is. As the time is long, the value of diffusion coefficient is more stable. Predicting the time factor by using longer time can get the smaller variability and the greater accuracy. It needs the diffusion coefficient of chloride ions and the covered thickness of reinforcement to predict the propagation time of reinforcement in concrete. By diffusion of chloride, the service life of ACI assumed as 300 years is less than HIC.

    目錄 目錄 I 圖目錄 III 表目錄 V 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3研究內容 2 第二章 文獻回顧 5 2.1 低放射性廢棄物最終處置設施 5 2.2 氯離子侵蝕 9 2.2.1 離子的擴散機制 10 2.2.2氯離子於混凝土內部之型態 11 2.2.3氯離子入侵之模式 12 2.2.4卜作嵐材料對抵抗氯離子入侵之影響 13 2.2.5孔隙結構對混凝土之影響 14 2.2.6佛萊第鹽類(Friedel’s salt)對氯離子影響 16 2.2.7氯離子擴散係數與濃度 17 2.2.8氯離子濃度門檻值 19 2.3 鋼纖維混凝土特性 22 2.4 鋼筋混凝土腐蝕推估 26 2.5 鋼筋之保護層厚度 27 2.6 MATLAB簡介 28 第三章 實驗計畫 31 3.1 實驗材料 31 3.2 主要實驗設備 35 3.3.1 實驗流程 37 3.3.2 實驗變數 39 3.3.3 實驗方法 42 第四章 實驗結果與分析 47 4.1 氯離子入侵濃度量測及分析 47 4.1.1 不同配比混凝土之濃度剖面 47 4.1.2 非線性迴歸分析氯離子表面濃度與擴散係數 53 4.2 鋼筋混凝土腐蝕推估 61 4.2.1 信賴度分析與亂數模擬 62 4.2.2 ACI配比與HIC配比的服務年限推估 68 4.3 氯離子侵蝕年限推估 75 4.3.1 服務年限推估 75 4.4鋼纖維混凝土生鏽情形 77 第五章 結論與建議 85 5.1 結論 85 5.2 建議 86 參考文獻 87 附錄 92  

    參考文獻
    王茂齡(1987),輸送現象,高立圖書有限公司。
    行政院原子能委員會,http://www.aec.gov.tw/。
    行政院環境保護署 全國環境水質監測資訊網,http://wqshow.epa.gov.tw/。
    台灣電力股份有限公司(2007),低放射性廢棄物最終處置計畫書(修訂版)。
    台灣電力股份有限公司(2008),蘭嶼貯存場貯存設施十年再評估報告。
    台灣電力股份有限公司(2011),核能後端營運處蘭嶼貯存場99年運轉年報。
    交通部(2004),交通設施鋼筋混凝土結構物劣化診斷評估與修補規範草案之建立-(RC橋樑)(二)。
    黃兆龍(1999),混凝土性質與行為,詹氏書局。
    趙國藩、彭少民、黃承達(1999),鋼纖維混凝土結構,中國建築工業出版社。
    陳順宇、郭碧娥(2004),統計學,華泰書局。
    林惠玲、陳正倉(2007),統計學-方法與應用,雙葉書廊有限公司。
    中國土木水利工程學會(2000),混凝土工程設計規範與解說,科技圖書。
    盧秉瑋(2006),「混凝土工程障壁之氯離子及失鈣劣化行為」,碩士論文,國立中央大學土木工程研究所,中壢。
    邱怡瑄(2009),「低放處置場工程障壁之溶出失鈣及劣化敏感度分析」,碩士論文,國立中央大學土木工程研究所,中壢。
    陳仕豪(2010),「氯離子入侵混凝土之擴散係數時間效應與飛灰之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
    羅欣蕙(2011),「低放射性廢棄物障壁混凝土受氯離子入侵之劣化及預估研究」,碩士論文,國立中央大學土木工程研究所,中壢。
    4SIGHT (URL):http://concrete.nist.gov/4sight/.
    DataFit (URL):http://www.curvefitting.com/.
    Life-365 (URL):http://www.life-365.org/.
    Ahmad, S. (2003), “Reinforcement corrosion in concrete structures, its monitoring and service life prediction–a review,”, Cement and Concrete Composites, Vol. 25, pp. 459-471.
    Bazant, Z. P. (1979a), “Physical Model for Steel Corrosion in Concrete Sea Structures Theory,” Journal of Structural Division , Vol. 105 , No. ST6 , ASCE , pp. 1137-1153.
    Bazant, Z. P. (1979b), “Physical Model for Steel Corrosion in Concrete Sea Structures Theory,” Journal of Structural Division , Vol. 105 , No. ST6 , ASCE , pp. 1155-1166.
    Brandt, A. M. (1995), Cement-based Composites: Material, Mechanical Properties and Performance., E & FN SPON, U. K..
    Boddy Andrea, Bentz Evan, Thomas, M. D. A., and, Hooton, R. D. (1999), “An overview and sensitivity study of a multimechanistic chloride transport model,” Cement and Concrete Research, Vol. 29, pp. 827-837.
    Bai, J., Wild, S., and Sabir, B. B. (2003), ”Chloride ingress and strength loss in concrete with different PC-PFA-MK binder compositions exposed to synthetic seawater,” Cement and Concrete Research, Vol. 33, pp.353-362.
    Balouch, S. U., Forth, J. P., Granju, J. L. (2010), “Surface corrosion of steel fibre reinforced concrete,” , Cement and Concrete Research, Vol. 40, pp. 410-414.
    Granju, J. L. and Balouch, S. U. (2005), “Corrosion of steel fibre reinforced concrete from the cracks,” , Cement and Concrete Research, Vol. 35, pp. 572-577.
    Gang Lin, Yinghua Liu, Zhihai Xiang (2010), “Numerical modeling for predicting service life of reinforced concrete structures exposed to chloride environments,’’ , Cement and Concrete Composites, Vol. 32, pp. 571–579.
    Haj-Ali, R. M., Kurtis, K. G. and Sthapit, A. R. (2001), “Neural Network Modeling of Concrete Expansion during Long-Term Sulfate Exposure,” , ACI Materials Journal, Vol. 98, pp.36-43.
    Jieting Zhang, Zoubir Lounis (2009), “Nonlinear relationships between parameters of simplified diffusion-based model for service life design of concrete structures exposed to chlorides,” , Cement and Concrete Composites, Vol. 31, pp. 591–600.
    Kouloumbi, N. G., Batis, and Pantazopoulou, P. (1995), “Efficiency of Natural Greek Pozzolan in Chloride Induced Corrosion of Steel Reinforcement,”, Cement, Concrete Aggregates, Vol. 17, No. 1, pp. 18-25.
    Liu, Y. and Weyers, R. E. (1998), “Modeling the Time-to-Corrosion Cracking in Chloride Contaminated Reinforced Concrete Structures,” ACI Materials Journal, Vol. 95, No.6, pp. 675-681.
    Leng, F., Feng, N., and Lu, X. (2000), “An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace salg concrete,” Cement and Concrete Research, Vol. 30, pp. 989-992.
    Mehta, P. K. (1986), Concrete Structure Properties and Materials., Prentice Hall, Inc., Englewood Cliffs, New Jersey, U.S.A..
    Nilsson, L., Poulsen, E., Sandberg, P. H., Sorensen, E., and Klinghoffer, O. (1996), “Chloride penetration into concrete, state-of-the-art, transport processes, corrosion initiation, test methods and prediction models,” The Road Directorate, Copenhagen.
    Reddy, B., Glass, G. K., Lim, P. J., Buenfeld, N. R., (2002), “On the corrosion risk presented by chloride bound in concrete,” , Cement and Concrete Composites, Vol. 24, pp. 1-5.
    Seatta, A. V., Scotta, R. V., and Vitaliani, R. V. (1993), “Analysis of Chloride Diffusion Into Partially Saturated Concrete,” ACI Material, Vol. 90, No. 5, pp. 441-451.
    Suryavanshi, A. K., Scantlebury, J. D. and Lyon, S. B. (1996), “Mechanism of Friedel’s salt formation in cement rich in tri-calcium aluminate,” Cement and Concrete Research, Vol. 26, pp. 717-727.
    Sherman, R. M., David, M. B., and Pfeifer, D. W. (1996), “Durability aspects of precast prestressed Concrete-Part 1 and 2,” Journal of PCI, Vol. 41, No. 4, pp. 60-64.
    Stanish, K. D., Hooton, R. D., and Thomas, M. D. A. (2000), “Testing the chloride penetration resistance of concrete:a literature review.” Federal Highway Administration.
    Seng, C. K. and Hong, Z. M. (2002), “Water permeability and chloride penetrability of high-strength lightweight aggregate concrete,” Cement and Concrete Research, Vol. 32, pp. 639-645.
    Saassouh, B., Lounis, Z. (2012), “Probabilistic modeling of chloride-induced corrosion in concrete structures using first- and second-order reliability methods.” , Cement & Concrete Composites 34.
    Tuutti, K. (1982), Corrosion of Steel in Concrete., Swedish Cement and Concrete Research Institute, Stockholm.
    Tuutti, K. (1993), Concrete 2000., E and FN Spon, London.
    Thomas, M. D. A., Shehata, M. H., Shashiprakash, S. G., Hopkins, D. S., and Cail, K. (1999), “Use of ternary cementitious systems containing silica funme and fly ash in concrete,’’ , Cement and Concrete Research, Vol. 29, pp. 1207-1214.
    Tritthart, J. and Cavlek, K. (2000), “Determination of total and free chloride in cement paste and concrete,” RILEM Proceedings, Pro 19, pp.429-437.
    Tang, F. , Chen, G., Jeffery, S. (2013), “Cement-modified enamel coating for enhanced corrosion resistance of steel reinforcing bars .’’ Cement & Concrete Composites 35.
    Uhlig, H. H., and Revie, R. W. (1991), Corrosion and Corrosion Control, Third Edition, pp. 90-122.
    Young, J. F., Mindess, S., and Darwin, D. (2002), Concrete, Prentice Hall, Inc., Upper Saddle River, New Jersey, U.S.A..
    Zhang, J. Z., McLaughlin, I. M., and Buenfeld, N. R. (1998), “Modelling of Chloride Diffusion into Surface-treated Concrete,” , Cement and Concrete Composites, Vol. 20, pp. 253-261.
    Zibara, H. R., Pérezfki, B., Hooton, D. M., and Thomas, M. D. A. (2000), ”A study of the effect of chloride binding on service life predictions,” Cement and Concrete Research, Vol. 30, pp. 1215-1223.

    QR CODE
    :::