| 研究生: |
王佑薪 You-Xin Wang |
|---|---|
| 論文名稱: |
偏振式駐波干涉儀應用於位移量測 Polarization standing wave interferometer for displacement measurement |
| 指導教授: |
李朱育
Ju-Yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 位移量測 、駐波干涉 、奈米球散射板 、偏振干涉技術 、相位正交解相技術 、上下計數技術 |
| 外文關鍵詞: | Displacement measurement, Standing wave interference, Nanosphere scattering plate, Polarization interference technique, Phase quadrature analysis technique, Up and down counting technique |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種新式的光學干涉儀:偏振式駐波干涉儀。此新式干涉儀整合了光學干涉系統、相位正交解相技術以及上下計數技術,可應用於長行程的位移量測,精度可達數奈米。
21世紀的工業技術皆與精密位移量測息息相關。半導體製程技術已達數個奈米等級,曝光機等機器皆需以干涉儀來輔助,才能確保作業時的正確位置。在業界中,常見的商用干涉儀有HP干涉儀、光柵干涉儀。這些干涉儀雖然具有極高的量測精度及較大的量測範圍,但架構通常體積較大且價格較昂貴,在校準及安裝上較為複雜。為了改善這些問題,我們設計了以單光束構建而成的偏振式駐波干涉儀,其優點可減少架設時所需的空間,且所使用的元件少,方便調整與校正,並搭配自行開發的相位正交解相技術、上下計數技術,可以取代目前昂貴的精密量測設備。
本系統的原理為重疊向左及向右傳遞的光線而形成駐波,再使用奈米球散射板將駐波光場散射。利用偏振干涉技術將散射出來的駐波轉換成相位正交的兩個訊號,透過反正切及解纏繞運算,取得駐波的相位變化,進而計算物件位移。實驗結果顯示,量測範圍能達到公分等級,量測解析度可達1 nm,量測靈敏度為1.35 ,量測速度極限可達1.6 mm/s。
In this study, a new type of optical interferometer is proposed: Polarization standing wave interferometer. This new interferometer integrates optical interference system, phase quadrature analysis technique, and up-and-down counting technique. It can be used for long-stroke displacement measurement with an accuracy of several nanometers.
In the 21st century, industrial technique is strongly rely on precision displacement measurement. The semiconductor process technique has reached several nanometer levels. It is necessary to be supported by an interferometer to ensure the correct position during operation. In the industry, there are some ordinary commercial interferometers such as HP interferometers and grating interferometers. The advantages of them are extremely high measurement accuracy and a large measurement range. However, the configuration of them are usually bulky and expensive, and are complicated to calibrate and set up.
In order to improve these problems, we have designed a polarized standing wave interferometer constructed with a single beam. The advantages are smaller built equipment space, the configuration uses fewer components, it is easy to adjust and calibrate, arranging with polarization interference technique and up and down counting technique. Above all it’s better than commercial interferometers.
The principle of the system is to form a standing wave by overlapping the light transmitted to the left and right, and then scattering the standing wave light field by using a nanosphere scattering plate. By means of detecting the phase variations of the scattered light from the scattering plate with the polarization phase quadrature technique, the displacement can be determined precisely.
The experimental results shows that the measurement range can reach the millimeter level. The measurement resolution reach 1 nm, the measurement sensitivity is 1.35 , and the maximum measurement speed reach 1.6 mm/s.
[1]. S. Hosoe, “Laser interferometric system for displacement measurement with high precision,” Nanotechnology 2(2), 88-95 (1991).
[2]. Y. Jourlin, J. Jay and O. Parriaux, “Compact diffractive interferometric displacement sensor in reflection,” Precision Eng. 26(1), 1-6 (2002).
[3]. T. Kubota, M. Nara and T. Yoshino, “Interferometer for measuring displacement and distance,” Opt. Lett. 12(5), 310-312 (1987).
[4]. S.Yan, G. Wang, C. Lin and Y. Luo, “Displacement measurement by single grating heterodyne Interferometry,” Conference on Lasers and Electro-Optics Pacific Rim (2015).
[5]. H. Maruyama, S. Inoue, T. Mitsuyama, M. Ohmi and M. Haruna, “Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness,” Appl. Opt. 41(7), 1315-1322 (2002).
[6]. S. De. Nicola, P. Ferraro, A. Finizo, G. Pesce and G. Pierattini, “Reflective grating interferometer for measuring the refractive index of transparent materials,” Opt. Commun. 118(5), 491-494 (1995).
[7]. M. H. Chiu, J. Y. Lee and D. C. Su, “Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry,” Appl. Opt. 36(13), 2936-2939 (1997).
[8]. O. Sasaki and H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt. 25(18), 3137-3140 (1986).
[9]. T. Suzuki, O. Sasaki and T. Maruyama, “Phase locked laser diode interferometry for surface profile measurement,” Appl. Opt. 28(20), 4407-4410 (1989).
[10]. P. J. Caber, “Interferometric profiler for rough surface,” Appl. Opt. 32(19) 3438-3441 (1993).
[11]. J. Guo, Z. Zhu and W. Deng, “Small-angle measurement based on surface-plasmonresonance and the use of magneto-optical modulation,” Appl. Opt. 38(31), 6550-6555 (1999).
[12]. J. Jin, L. Zhao and S. Xu, “High-precision rotation angle measurement method based on monocular vision,” Opt. Soc. 31(7), 1401-1407 (2014).
[13]. S. T. Lin, K.T. Lin and W. J. Syu, “Angular interferometer using calcite prism and rotating analyzer,” Opt. Common. 277(2), 251-255 (2007).
[14]. M. Lkram and G. Hussian, “Michelson interferometer for precision angle measurement,” Appl. Opt. 38(1), (1999).
[15]. P. Shi and E. Stijns, “New optical method for measuring small-angle rotations,” Appl. Opt. 27(20) (1988).
[16]. H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” J. Meas. Sci. Technol, 21(11), 1-9 (2011).
[17]. J. Y. Lee and M. P. Lu, “Optical heterodyne grating shearing interferometry for long rang positioning applications,” Opt. Commun. 284(3), 857-862 (2011).
[18]. L. H. Shyu, Y. C. Wang, C.P. Chang, P. C. Tung and E. Manske, “Investigation on displacement measurements in the large measuring range by utilizing multibeam interference,” Sens. Lett. 10(5), 1109-1112 (2012).
[19]. O. Wiener, “Stehende Lichtwellen und die Schwingungsrichtung polarisirten Lichtes,” Ann. Phys. 276(6), 203-243 (1890).
[20]. H. Stiebig, H. Büchner, E. Bunte, V. Mandryka, D. Knipp and G. Jäger, “Standing-wave interferometer,” Appl. Phys. Lett. 83(1), 12-14 (2003).
[21]. V. Jovanov, J. Ivanchev and D. Knipp, “Standing wave Spectrometer,” Opt. Express 18(2), 426-438 (2010).
[22]. J. Y. Lee, Y. X. Wang, Z. Y. Lin, C. R. Lin and C. H. Chan, “Standing-wave interferometer based on single-layer SiO2 nano-sphere scattering,” Opt. Express. 25(22), 26628-26637 (2017).
[23]. E. Bunte, V. Mandryka, K.H. Jun, H. Büchner, G. Jäger and H. Stiebig, “Thin transparent pin-photodiodes for length measurements,” Sensor Actuat. A Phys. 113(3), 334-337 (2004).
[24]. H. Stiebig, H.-J. Büchner, E. Bunte, V. Mandryka and D. Knipp, “Standing wave detection by thin transparent n–i–p diodes of amorphous silicon,” Thin solid films. 427(1-2), 152-156 (2003).
[25]. H. Stiebig, V. Mandryka, E. Bunte, H.-J. Büchner and K.H. Jun, “Novel micro interferometer for length measurements,” J. N. Crystal. S. 338-340, 793-796 (2004).
[26]. K.H. Jun, E. Bunte and H. Stiebig, “Optimization of phase-sensitive transparent detector for length measurements,” IEEE Trans. Electron. Devices 52(7), 1656-1661 (2005).
[27]. V. Jovanov, E. Bunte, H. Stiebig and D. Knipp, “Transparent Fourier transform spectrometer,” Opt. Lett. 36(2), 274-276 (2011).
[28]. M. Engelhart and J. K. Kristensen, “Evaluation of Cutaneous Blood Flow Responses by 133Xenon Washout and a Laser-Doppler Flowmeter,” J. Invest. Dermatol. 80(1), 12-15 (1983).
[29]. M. Sasaki, X. Mi and K. Hane, “Standing wave detection and interferometer application using a photodiode thinner than optical wavelength,” Appl. Phys. Lett. 75(14), 2008-2010 (1999).
[30]. E. Coarer, L.G. Venancio, P. Kren, J. Ferrand, P. Puget, M. Ayraud, C. Bonneville, B. Demonte, A. Morand, J. Boussey, D. Barbier, S. Blaize, T. Gonthiez, “SWIFTS: On-chip very high spectral resolution spectrometer,” Int. Conference on Space Opt. (2010).
[31]. M. S. Kim, B. J. Kim, H. H. Lim and M. Cha, “Observation of standing light wave by using fluorescence from a polymer thin film and diffuse reflection from a glass surface: Revisiting Wiener’s experiment,” Am. J. Phys. 77, 761-764 (2009).
[32]. X. L. Wu, H. Zhang, Y. Y. Tseng and K. C. Fan, “A robust sinusoidal signal processing method for interferometers,” Sixth International Symposium on Precision Mechanical Measurements. 8916, 89160N (2013).
[33]. http://www.shs.edu.tw/works/essay/2017/11/2017110910291800.pdf
[34]. https://forums.ni.com/t5/forums/searchpage/tab/message?q=Threshold+Detector+VI
[35]. http://zone.ni.com/reference/en-XX/help/371361P-01/lvans/ threshold_peak_
detector/
[36]. R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid. Sci. 1(1), 3-17 (1988).
[37]. P. Hu, Y. Wang, H. Fu, J. Zhu and J. Tan, “Nonlinearity error in homodyne interferometer caused by multi-order Doppler frequency shift ghost reflections,” Opt. Express. 25, 3605-3612 (2017).