跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王麗棠
Li-Tang Wang
論文名稱: 增點式立方體網格開發及其在三維半導體元件模擬
Development of point-added cube element and its application to Semiconductor Device Simulation
指導教授: 蔡曜聰
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 54
中文關鍵詞: 增點式立方體網格開發導體元件模擬
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們使用C語言,建立一套可以精確模擬半導體元件之網格,其為增點式立方體網格。我們發現在傳統立方體網格在不同接面方向上會造成誤差,為此我們設計此一新的網格。接著使用簡易電阻做理論計算,並與模擬值結果比較來驗證,確認此新式網格的可行性。最後,將增點式網格應用在二極體、圓弧接面及內含氧化區塊之半導體,並將這些應用做理論的推導與程式模擬結果做比較分析,所有模擬證實此增點式網格的可靠度。


    In this thesis, we use C language to develop a new point-added cube element for 3D device simulation. We found that the traditional cube element cause errors due to the low accuracy. For this reason we design a point-added cube element. We compared the traditional cube element with the point-added cube element. A simple resistor will be used to verify our result with theoretical value. Finally, we applied the point-added cube element to PN diodes and 3D semiconductor including an internal oxide block. The simulation results match the theoretical derivation.

    摘要 .................................................... i Abstract ............................................... ii 目錄 .................................................. iii 圖目錄 ................................................. iv 表目錄 ................................................. vi 第一章 簡介 ........................................... 1 第二章 三維網格與等效電路模型分析..................... 3 2-1. 三維網格之程式架構與分析........................ 3 2-2. 四面體模組之電場推導............................ 7 2-3. 四面體模組之電子及電洞流推導.................... 12 2-4. 立方體網格與增點式網格結構定義.................. 15 第三章 增點式網格與立方體網格之模擬與驗證 17 3-1. 增點式網格與立方體網格之比較與分析............... 17 3-2. 增點式網格與立方體網格之電阻模擬................. 19 3-3. 增點式網格與立方體網格電阻模擬產生之誤差分析..... 21 3-4. 增點式網格之PN二極體模擬分析.................... 25 第四章 增點式網格三維之應用與驗證....................... 29 4-1. 管狀電阻理論推導................................. 29 4-2. 管狀電阻模擬與驗證............................... 32 4-3. 內嵌氧化層之電阻驗證............................. 36 第五章 結論 ............................................ 39 參考文獻 ................................................. 41

    [1] H. Lv, Y. Wang “Partition Triangle Meshes into Coarsely Quadrangular Segmentation,” Fuzzy Systems and Knowledge Discovery, 2008 FSKD ’08. Fifth International Conference , vol. 4,pp. 590-594, 2008.
    [2] C. C. Chang, C. H. Huang, J. F. Dai, S. J. Li, and Y. T. Tsai, “3-D Numerical Device
    Simulation Including Equivalent-Circuit Model”, IEDMS, 2002.
    [3] W. H. Chiu, “Finding internal vector from the edge vector in arbitrary tetrahedron element for 3D semiconductor Device Simulation.” M.S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, pp. 8-32, 2017.
    [4] D. J. Riley and C. D. Turner , “Interfacing unstructured tetrahedron grids to structured-grid FDTD,” IEEE Trans, Microwave and Guided Wave Letters, vol. 5, no. 9, pp. 284 - 286, Sep 1995.
    [5] S. Y. Lee, “Development of four-in-one regular triangle element and its applications to 2D semiconductor device simulation.” M.S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, pp. 15-24, 2016.
    [6] M. C. Huang, “Area-Partition Problems in 2-D Semiconductor Device Simulation.” M.S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, pp. 15-24, 2015.
    [7] L. P. Chew. “Guaranteed-quality mesh generation for curved surfaces,” In SCG ’93: Proceedings of the ninth annual symposium on Computational geometry, pp. 274–280, 1993.
    [8] R. E. Bank, D. J. Rose, and W. Fichtner, “Numerical methods for semiconductor device,”
    IEEE Trans, Electron Devices, vol. 30, no. 9, Sep. 1983.

    [9] Y. Q. Hong, “Development of tetrahedron circumcenter element and its applications to 3D semiconductor device simulation” M.S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, pp. 32-38, 2017.
    [10] K. C. Chien, “Finding internal vector from the barycenter of vector in tetrahedron for 3D semiconductor device simulation ,” M.S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, pp. 29-38, 2017.
    [11] S. B. Park, C. S. Kim and S. U. Lee, “Error Resilient 3-D Mesh Compression,” IEEE Trans, Multimedia, vol. 8, no. 5, pp. 885 - 895, Oct. 2006.
    [12] Y. C. Lin, “Breakdown simulation of a spherical PN junction in cylindrical coordinates”
    M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China,
    pp.25-31, 2012.
    [13] R. A. Jabr, M. Hamad, Y. M. Mohanna, “Newton-Raphson solution of Poisson's equation in a pn diode”, Int. J. Electrical Eng. Educ,pp.27-29, Jan. 2007.
    [14] M. Shur, “Introduction to Electronic Devices,” Chapter 3, John Wiley & Sons Inc, pp.227-230, 1996.
    [15] J. S. Zhao, F. L. Chu and Z. J. Feng, “Kinematics of Spatial Parallel Manipulators With Tetrahedron Coordinates,” IEEE Trans, Robotics, vol. 30, no. 1, pp. 233-243, Feb. 2014.
    [16] L. P. Chew. “Guaranteed-quality mesh generation for curved surfaces,” In SCG ’93: Proceedings of the ninth annual symposium on Computational geometry, pp. 274–280, 1993.
    [17] P. Y. Chang, “Development of point-added square element and its applications to 2-D semiconductor device simulation.” M.S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, pp. 20-22, 2016.

    QR CODE
    :::