跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇奕丞
Yi-Cheng Su
論文名稱: CNC工具機剛性攻牙之實現
Implementation of CNC Rigid Tapping
指導教授: 董必正
Pi-Cheng Tung
李雄
Hsiung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 90
語文別: 英文
論文頁數: 70
中文關鍵詞: 工具機浮動攻牙剛性攻牙
外文關鍵詞: CNC, machine tools, floating tapping, rigid tapping
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業的進展,製造業目前已處於時間與品質並重的時代,因此目前自動化製造設備一直朝向高速高精度的方向發展,本論文就針對CNC工具機的剛性攻牙功能做伺服迴路控制,剛性攻牙與一般傳統的可動式浮動攻牙最大的不同,剛性攻牙加工的速度比浮動攻牙快很多,且可以降低刀具之摩耗,如此可以使加工時間縮短並節省成本。由於剛性攻牙在加工過程中,主軸與Z軸必須維持一定的位置比例,即主軸每旋轉一圈,Z軸必須往下一個節距(pitch),本論文分別採用兩種不同的方式來達到此一目的。
    第一種方式是採用Z軸追隨主軸的方式,在本論文中考慮到伺服系統普遍存在的延遲問題,因此在Z軸加入前饋控制器(Feedforward Controller)來增加系統的追蹤能力。
    第二種方式是採用主軸與Z軸個別給予一定比例的位置命令,但由於主軸與Z軸的動態不同,所以必須使用交叉耦合控制器(Cross-Coupled Controller, CCC)作補償運算,來增加兩軸間的協調性,以降低兩軸間的輪廓誤差;另外,為了達到高速高精度之需求,最後本論文使用了前饋控制與交叉耦合控制之合成系統,並探討了前饋控制與交叉耦合控制之間的交互作用及此二控制器在一高速高精度之運動控制系統中所扮演的角色。
    關於上述本論文所發展的CNC工具機之剛性攻牙功能的伺服迴路控制,除了理論推導之外,論文中並給定實際運動進給的條件進行模擬與實驗驗證,證明這些伺服迴路控制的可行性。


    As the development in industry, time and quality are more and more important in manufacturing industry. Therefore, automatic manufacturing machines are tending to high speed and high precision. This thesis is aimed at the servo loop control of rigid tapping function on CNC machine tools. Rigid tapping has several advantages that are faster machining, lower cost and higher precision than traditional floating tapping.
    The positions of the Spindle and the Z-Axis should maintain the same ratio at the process of rigid tapping. It means that when the Spindle is rotated one turn, the Z-Axis should be fed one pitch. The thesis uses two different methods to achieve this purpose.
    In the first method, the Z-Axis is controlled to trace the Spindle. The research adopts a feedforward controller to improve the tracking performance of the Z-Axis.
    In the second method, we consider issuing individual constant ratio position command to the Spindle and the Z-Axis. Because of the differences in dynamics of the Spindle and the Z-Axis, we use a cross-coupled controller to reduce the contouring error between the Spindle and the Z-Axis. The hybrid system of the feedforward controller and the cross-coupled controller is integrated to satisfy the requirements of high speed and high accuracy motion control.
    Finally, the above servo loop control of rigid tapping on CNC machine tools is verified by the simulation and experimental results.

    摘要 i 目錄 ii 第一章 導論 iii 第二章 剛性攻牙之簡介 iv 第三章 控制器之設計 v 第四章 實驗與討論 vi 第五章 結論 vii 附錄 viii

    [1] Ogata, K., Discrete Time Control System, Prentice Hall, 1987.
    [2] Franklin, G. F., Powell J. D. and Workman M. L., Digital Control of Dynamic System, Prentice Hall, 1990.
    [3] Poo, A., Bollinger, J. G., and Younkin, G. W., “Dynamic Errors in Type I Contouring Systems,” IEEE Trans. on Industry Automation, Vol. 1A-8, No. 4, pp.477-484, 1972.
    [4] 陳金聖, “利用雙球感良測發展數值工具機之誤差展段與補償技術,” 國立交通大學機械工程研究所碩士論文, 1993.
    [5] 陳金聖, “利用雙球感良測發展數值工具機之誤差展段與補償技術,” 國立交通大學機械工程研究所碩士論文, 1993.
    [6] Tomizuka, M., “High –Speed End Mill Boring and Rounded Corner Cutting,” Procesdings of American Control Conference, June 1994.
    [7] Tomizuka, M., “Zero Phase Error Tracking Algorithm for Digital Control,” ASME Journal of Dynamic Systems, Measurement, and Control, vol.109, pp.349-254, 1987.
    [8] Weck, M. G., “Sharp Corner Tracking Using the IKF Control Strategy,” Annals of CIRP 39/1/, pp.437-441, 1990.
    [9] Masory, O., “Improving Contouring Accuracy of NC/CNC Systems with Additional Velocity Feed Forward Loop, “ASME Journal of Engineering for Industry, vol.108, pp.227-230, 1986.
    [10] Lee, A. C. and Chen, C. S., “New Direct Velocity and Acceleration Feedforward Tracking Control in a Retrofitted Milling Machine, “International Conference on Precision Engineering, Vol.1, pp.49-54, November, 1997.
    [11] Sarachik, P. and Ragazzini, J. R., “A Two Dimentional Feedback Control System,” Trans. AIEE, vol.76, pp.55-61, 1957.
    [12] Koren, Y., “Cross-Coupled Biaxial Computer for Manufacture System,” ASME Journal of Dynamic Systems, Measurement, and Control, vol.102, pp.265-272, 1980.
    [13] Chung, H. Y. and Liu, C. H., “Cross-Coupled Adaptive Feedrate Control for Multi-axes Machine Tools,” ASME Journal of Dynamic Systems, Measurement, and Control, vol.113, pp.451-457, 1991.
    [14] Chung, H. Y. and Liu, C. H., “A Model-Referenced Adaptive Control Strategy for Improving Contour Accuracy of Multi-axes Machine Tools,” IEEE Transaction on Industry Applications, vol.28, pp.221-227, 1992.
    [15] 郭一政, “交互行控制器在多軸路徑追蹤的應用,” 國立成功大學機械工程研究所碩士論文, 1996.
    [16] 陳金聖, “高速CNC工具機循徑運動控制的軌跡精度改進策略,” 國立交通大學機械工程研究所碩士論文, 1999.
    [17] Nozawa, Y., Amemya, Y. and Kawamura, H., “System for Controlling Motors for Synchronous Operation,” United States Patent, 1986.
    [18] Nobuhiro, K. and Yoshiji, H., “Tracking Control Method Between Two Servo Systems,” United States Patent, 1991.
    [19] Tsutsumi, S. and Ito, N., “Apparatus and Method for Synchronized Control of Machine Tools,” United States Patent, 1992.
    [20] Rourke, E. G., “Method and apparatus for a numerically controlled tapping machine,” United States Patent, 1994.
    [21] Tnkao, S., Toshiaki, O. and Ryouji, E., “Method of Screwing a Pipe to an Object” United States Patent, 1995.
    [22] Yasnsuke, I., “Method of Feedforward Control for Servomotor,” United States Patent, 1995.
    [23] Tsutsui, K., “Gain Changing Control System for a Threading Apparatus,” United States Patent, 1995.
    [24] Tsutsui, K. and Iwai, M., “Threading Cutting Machine and Threading Cutting Method,” United States Patent, 1995.
    [25] Jiirgen, K., Villingon, S., Christof, S., and Edgur, W., “Method for the Control of Track Following in a Recoder,” United States Patent, 1997.
    [26] 寶元科技, “PCC1620運動控制軸卡繁體中文使用手冊,” 2001.
    [27] Panasonic, “AC伺服馬達驅動器MINAS-A操作說明書,” 2001.

    QR CODE
    :::