跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曹鈞
Chun, Tsao
論文名稱: 基於物件重要性程度之影像尺寸調整評估機制
Quality Assessment of Image Retargeting based on Importance of Objects
指導教授: 蘇柏齊
Po-Chyi Su
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 52
中文關鍵詞: 影像尺寸調整畫質評估視覺顯著圖資訊損失
外文關鍵詞: Image retargeting, Quality assessment, Visual saliency map, Information loss
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了將影像完整呈現於各種尺寸的輸出裝置,且盡量減少視覺上的
    扭曲變形,許多基於內容之影像尺寸調整機制被提出,如何有效地評估
    各種方法的效果成為一項重要任務。本研究提出一個基於物件重要程度
    的影像尺寸調整評估機制,透過語義分割方法將影像中的所有像素點分
    類,根據語義中的類別,給予該所在區域不同的視覺重要程度,依此做
    為人眼視覺對於該區域受破壞的敏感度衡量,希冀獲致更貼近使用者主
    觀感受的顯著圖,並將其應用於長寬比相似性畫質衡量演算法以提升準
    確度。我們另外觀察到人眼觀看無前景物影像時容易受到畫面整體資訊
    損失的影響,因此提出無明顯前景物資訊損失懲罰調整策略。我們先利
    用語義資訊判斷場景中有無明顯前景物,再給予不同大小級別的資訊損
    失懲罰,提高無明顯前景物場景的評分準確度。實驗結果顯示,本研究
    能有效評估影像尺寸調整機制,與現有方法相較有更高的準確度。


    Many image retargeting methods have been proposed to resize images to
    fit in various sizes of display devices with less perceptual distortion. Assessing
    the quality of retargeted images has thus become an important task for
    developing such methods. In this research, we propose an image retargeting
    quality assessment (IRQA) based on importance of objects. We utilize
    semantic segmentation to classify pixels, which are assigned with different
    importance values representing the sensitivity of human eyes to distortion. A
    visual saliency map is created to better fit the subjective perception of humans
    and is then used in the evaluation method called “Aspect Ratio Similarity”
    (ARS) to improve its accuracy. Furthermore, as observing that human eyes
    tend to be affected more by the global information loss in images in which
    there is no obvious foreground object, we propose the strategy of information
    loss adjustment in such images. We first utilize semantic information to
    determine whether a foreground object exists and then adopt different degrees
    of information loss penalty to improve the accuracy of the assessment. The
    experimental results show that the proposed approach is effective in
    evaluating the image retargeting methods and outperforms existing quality
    assessment methods.

    摘要...............................................................................................................................I Abstract......................................................................................................................... II 目錄.............................................................................................................................III 第一章、 緒論............................................................................................................. 1 1.1. 研究動機與背景....................................................................................... 1 1.2. 研究貢獻................................................................................................... 3 1.3. 論文架構................................................................................................... 4 第二章、 相關研究..................................................................................................... 5 2.1. 影像尺寸調整機制................................................................................... 5 2.2. 影像尺寸調整品質評估機制................................................................... 7 2.3 視覺顯著圖............................................................................................................ 9 2.4 IRQA 資料集 .......................................................................................................... 9 第三章、 提出方法................................................................................................... 11 3.1. 長寬比相似性演算法............................................................................. 12 3.2. 基於物件重要性之視覺顯著圖............................................................. 16 3.2.1 場景分割模型與預訓練模型................................................................... 17 3.2.2 物件視覺重要性人工標記....................................................................... 18 3.2.3 顯著圖的融合........................................................................................... 20 3.3. 無明顯前景物資訊損失懲罰調整策略................................................. 26 第四章、 實驗結果................................................................................................... 30 4.1. 資料集與指標......................................................................................... 30 4.2. 測試結果................................................................................................. 31 4.2.1 MIT RetargetMe 上的結果................................................................ 31 4.2.2 不同顯著圖與功能的變化比較....................................................... 34 4.2.3 評估 Improved SCAN....................................................................... 34 第五章、 結論與未來展望....................................................................................... 37 5.1. 結論......................................................................................................... 37 5.2. 未來展望................................................................................................. 37 參考文獻..................................................................................................................... 38 附錄............................................................................................................................. 41 A. ADE20K 類別之重要程度(DoI)人工設定 ................................................ 41

    [1] M. Rubinstein, S. Ariel, and A. Shai. "Improved seam carving for video
    retargeting." ACM transactions on graphics, vol. 27, no. 3, 2008.
    [2] P. Krähenbühl, M. Lang, A. Hornung, and M. H. Gross, “A system for
    retargeting of streaming video,” ACM Transactions on Graphics, vol. 28, no. 5,
    2009.
    [3] Y. Pritch, K. Eitam, and P. Shmuel. "Shift-map image editing." 2009 IEEE
    12th international conference on computer vision. IEEE, 2009.
    [4] Y.-S. Wang, C.-L. Tai, O. Sorkine, and T.-Y. Lee, “Optimized scale-andstretch for image resizing,” ACM transactions on graphics, vol. 27, no. 5, pp.
    118, 2008.
    [5] L. Wolf, G. Moshe, and C. Daniel. "Non-homogeneous content-driven
    video-retargeting." 2007 IEEE 11th international conference on computer
    vision. IEEE, 2007.
    [6] Y. Zhang, W. Lin, X. Zhang, Y. Fang and L. Li, "Aspect ratio similarity
    (ARS) for image retargeting quality assessment." 2016 IEEE International
    Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
    2016.
    [7] Y. Zhang, Y. Fang, W. Lin, X. Zhang, and L. Li, “Backward registrationbased aspect ratio similarity for image retargeting quality assessment,” IEEE
    Transactions on image processing, vol. 25, no. 9, pp. 4286–4297, 2016.
    [8] Y. Zhang, W. Lin, Q. Li, W. Cheng, and X. Zhang, “Multiple-level featurebased measure for retargeted image quality,” IEEE Transactions on image
    processing, vol. 27, no. 1, pp. 451–463, Jan. 2018.
    [9] M. Rubinstein, D. Gutierrez, O. Sorkine, and A. Shamir, “A comparative
    study of image retargeting,” ACM transactions on graphics, vol. 29, no. 5, pp.
    160:1–160:10, 2010.
    [10] M. Rubinstein, A. Shamir, and S. Avidan, “Multi-operator media
    retargeting,” ACM transactions on graphics, vol. 28, no. 3, 2009.
    [11] D.-Y. Wei, “Content-Based Multi-Operator Retargeting and Its Quality
    Evaluation,” NCU, 2019. [Online]. Available:
    http://ir.lib.ncu.edu.tw/handle/987654321/81272
    [12] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani, "Summarizing visual
    data using bidirectional similarity." 2008 IEEE Conference on Computer
    Vision and Pattern Recognition. IEEE, 2008.
    [13] B. S. Manjunath, J.-R. Ohm, V. V. Vasudevan, and A. Yamada, “Color and
    texture descriptors,” IEEE Transactions on circuits and systems for video
    technology, vol. 11, no. 6, pp. 703–715, Jun. 2001.
    [14] E. Kasutani and A. Yamada, "The MPEG-7 color layout descriptor: a
    compact image feature description for high-speed image/video segment
    retrieval." Proceedings 2001 International Conference on Image Processing
    (Cat. No. 01CH37205). vol. 1. IEEE, 2001.
    [15] C. Liu, J. Yuen, and A. Torralba, “SIFT flow: Dense correspondence across
    scenes and its applications,” IEEE transactions on pattern analysis and machine
    intelligence, vol. 33, no. 5, pp. 978–994, May 2011.
    [16] O. Pele and M. Werman, “Fast and robust earth mover’s distances,” 2009
    IEEE 12th international conference on computer vision, IEEE, 2009.
    [17] C.-C. Hsu, C.-W. Lin, Y. Fang, and W. Lin, “Objective quality assessment
    for image retargeting based on perceptual geometric distortion and information
    loss,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 3, pp.
    377–389, Jun. 2014.
    [18] Z. Peng, J. Qiuping, F. Shao, W. Gao, W. Lin, "Lggd+: Image retargeting
    quality assessment by measuring local and global geometric distortions." IEEE
    Transactions on Circuits and Systems for Video Technology, 2021.
    [19] Y. Fang, Z. Chen, W. Lin, and C.-W. Lin, “Saliency detection in the
    compressed domain for adaptive image retargeting,” IEEE Transactions on
    Image Processing, vol. 21, no. 9, pp. 3888–3901, Sep. 2012.
    [20] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xiang,
    P. Torr, L. Zhang, “Rethinking Semantic Segmentation from a Sequence-toSequence Perspective with Transformers,” Proceedings of the IEEE/CVF
    Conference on Computer Vision and Pattern Recognition (CVPR), June. 2021.
    [21] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, "Semantic
    understanding of scenes through the ade20k dataset." International Journal of
    Computer Vision, vol. 127, no. 3, pp. 302-321, 2019.
    [22] Mmsegmentation Contributors, MMSegmentation: OpenMMLab
    Semantic Segmentation Toolbox and Benchmark. https://github.com/openmmlab/mmsegmentation, 2020. [Online]. Available: https://github.com/openmmlab/mmsegmentation
    [23] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
    pp. 81–93, Jun. 1938.
    [24] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention
    for rapid scene analysis,” IEEE Transactions on pattern analysis and machine
    intelligence, vol. 20, no. 11, pp. 1254–1259, Nov. 1998.
    [25] D. DeCarlo and A. Santella, “Stylization and abstraction of photographs,”
    ACM transactions on graphics, vol. 21, no. 3, pp. 769–776, 2002.
    [26] R. Achanta and S. Süsstrunk, "Saliency detection for content-aware image
    resizing." 2009 16th IEEE international conference on image processing (ICIP).
    IEEE, 2009.
    [27] Y. Niu, J. Chen, and W. Guo, “Meta-metric for saliency detection
    evaluation metrics based on application preference,” Multimedia Tools and
    Applications, vol. 77, no. 20, pp. 26351–26369, 2018

    QR CODE
    :::