跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張程富
Cheng-Fu Zhang
論文名稱: 電場誘導磺酸化聚碸接枝官能化氧化石墨烯之複合中高溫質子交換薄膜
指導教授: 諸柏仁
Po-Jen Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 118
中文關鍵詞: 高溫質子交換薄膜磺酸化聚碸電場官能基化氧化石墨烯
外文關鍵詞: High temperature proton exchange membrane, Sulfonated polysulfone, Electric field, Functionalized Graphene Oxide
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當今商業化的高溫型 PEMFC 所使用的薄膜材料為PBI(polybenzimidazole),此高分子材料對磷酸具有良好的吸附能力,在高溫下能夠有良好的質子傳遞能力,但是高度的磷酸吸附能力卻弱化機械強度,另外此材料本身的價格昂貴不利於廣泛使用。因此開發一具有高質子傳遞能力、高化學穩定性以及具有足夠機械強度的質子交換薄膜是多年來研究相關材料學者的目標。
    本研究所使用的高分子材料為具有高穩定性的磺酸化聚碸。先前研究顯示此高分子對於磷酸有良好的吸附能力,操作溫度小於 160°C 時具有高度的質子傳遞能力。但當溫度大於 160°C 時,磷酸的滯留能力下降,質子傳遞能力也隨之下降。本研究藉由接枝氧化石墨烯(graphene oxide) 改善磺酸化聚碸在高溫(大於 160°C)時薄膜的表現。該無機材料具有很好的熱、化學穩定性,其結構上又具有大量的含氧官能基(如:羥基、羧基、醚
    基),因此針對磷酸具有良好的吸附能力。然而氧化石墨烯在溶液中較不容易分散,本研究還進步將氧化石墨烯結構上增加了苯并咪唑(benzimidazole)官能基團;一方面是增加氧化石墨烯在溶液中的分散性,另外還可以增加對磷酸的吸附能力有利於提升質子傳遞。
    在 PEMFC 的論文研究中,無機物添加的方法來改善薄膜的特性,其無機物的添加量都不超過 3%,主要原因是添加過多的無機物會導致薄膜機械強度過強,過於剛硬使其容易碎裂;另外過多的無機物會在薄膜中造成團聚分散性不佳,使薄膜的性能下降。為了能提高無機物在薄膜中的含量而不損失薄膜性能,本研究將無機物接枝於高分子的結構中,該方法可以避免無機物在薄膜中的聚集堆疊,改善薄膜的機械強度,不使薄膜過於剛硬或脆裂。在質子傳遞的測試中,於 25%磺酸官能化高分子中無機物
    添加到 4 wt%時導電度明顯上升;而當磺酸官能化程度達 58%時,導電度卻可以持續上升直到無機物含量到 8 wt%。該結果說明提升官能基的程度可以增加無機物的添加量,進而達到有效提升導電度的目標。
    另外,為了能進一步改善薄膜物性,本研究依據先前實驗室開發電場極化方法於薄膜的製作過程中施加電場。該場效極化效應使無機物以及高分子在薄膜中順向排列,使質子傳遞路徑能夠更短更筆直,進而提升傳遞效率。以 25%官能化高分子添加 4wt%官能基化氧化石墨烯,經過外加電場誘導之後導電度從原本的 1.28*10-2 S/cm 上升至 1.44*10-2 S/cm;而在 58%官能化 8 wt%氧化石墨烯接枝之高分子,經過外加電場誘導之後導電度從原本的 2.95*10-2 S/cm 上升至 3.4*10-2 S/cm。
    最後在燃料電池的測試是選用 58%磺酸化磺酸化聚碸 8wt%氧化石墨烯接枝之複合薄膜來進行測試,可以看到功率密度隨著溫度上升而上升,到 180°C 達最高點,開路電壓為 0.913V,功率密度達到 246.4 mW/cm2。此燃料電池功率密度接近商用 PBI 基礎的高溫質子膜之效果。


    Benzimidazole Graphene functionalized Polysulfone(PSU) High temperature proton exchange membrane prepared under electric field poling Proton exchange membrane fuel cells (PEMFC) operating at high temperatures can have a
    good tolerance for carbon monoxide poisoning catalysts, and operating at high temperatures can improve the overall operating efficiency of the battery, and it does not require a good management system for water…etc.
    However, the key element that can demonstrate the high-temperature fuel cell is the proton exchange membrane. The membrane must have good proton transfer ability, and also need to have good thermal and chemical stability and mechanical strength to extend the fuel.
    The thin film material used in the commercial high-temperature PEMFC is PBI (polybenzimidazole). This polymer material is selected because it has good adsorption
    capacity for phosphoric acid and can have good proton transfer capacity at high temperature, but high adsorption capacity However, the mechanical strength is decreased. In addition, the high price of this material is not conducive to widespread use. Therefore, the development of
    a proton exchange membrane with high proton transfer ability, high chemical stability and certain mechanical strength has been studied by related materials scholars for many years.
    The polymer material used in this study is a sulfonated polymer with high stability. This polymer has good adsorption capacity for phosphoric acid and has a high proton transfer capacity when the operating temperature is less than 160°C. When the operating temperature
    is greater than 160°C, the retention capacity of phosphoric acid decreases and the proton transfer capacity also decrease.
    In order to improve the performance of the film at high temperatures (greater than 160°C), graphene oxide was also added in this experiment. This inorganic material has good thermal and chemical stability, and its structure has a lot of The oxygen-containing functional group
    (such as: hydroxyl, carboxyl, ether), so it has good adsorption capacity for phosphoric acid.
    However, graphene oxide is not easy to disperse in solution. In this study, graphene oxide was
    additionally functionalized, and benzimidazole functional groups were added to the structure.
    On the one hand, graphene oxide was added to the solution. In addition, it can increase the adsorption capacity of phosphoric acid to increase proton transfer.
    In PEMFC’s thesis research, the method of adding inorganic substances to improve the characteristics of the film, the addition of inorganic substances is less than 2%, the main reason is that the addition of too much inorganic substances will lead to the mechanical
    strength of the film is too strong, and the film is too rigid and easy to break. In addition, the dispersibility of inorganic substances in the film will also lead to the performance of the film.
    Too much inorganic substances will cause agglomeration in the film and reduce the performance of the film.
    In order to increase the content of inorganic substances in the film without losing the properties of the film, this study uses grafting to bond the inorganic substances in the polymer structure. This method can improve the mechanical strength of the film without causing The
    film is too rigid and brittle; in addition, it also avoids the stacking of inorganic substances in the film. In the proton transfer test, it can be found that when the inorganic substance is added to 8%, the conductivity can always rise, indicating that this method can make the film
    accommodate More inorganic substances will not reduce the performance of the film due to excessive inorganic substances.
    In addition, in order to further improve the overall physical properties of the film, this study applied an electric field during the production process of the film based on the research methods of the previous laboratory, so that the inorganic substances and polymers can be
    aligned in the film in order to enable the proton transfer path in the film. Shorter and straighter, thereby improving transmission efficiency.
    The fuel cell test is the previous test result. It is tested with reference to the composite film added with 8wt% functionalized graphene oxide. It can be heated immediately and rises as the temperature rises, which is the highest at 180°C. The open circuit voltage is 0.913V, and the power density reaches 246.4 mW/cm2.

    目錄 中文摘要.....................................................................................................................................i Abstract..................................................................................................................................... iii 目錄...........................................................................................................................................vi 圖目錄.......................................................................................................................................ix 表目錄.................................................................................................................................... xiii 第一章 緒論............................................................................................................................1 1-1 前言..............................................................................................................................1 1-2 研究動機......................................................................................................................3 第二章 文獻回顧......................................................................................................................6 2-1 燃料電池簡介..............................................................................................................6 2-2 質子交換薄膜燃料電池介紹......................................................................................7 2-3 質子交換薄膜的質子傳遞機制................................................................................10 2-4 高溫質子交換薄膜的發展........................................................................................12 2-4-1 全氟磺酸高分子薄膜修飾 ............................................................................12 2-4-1-A 加入可以協助質子傳遞的物質 ................................................................13 2-4-1-B 加入親水性的無機物 ................................................................................14 2-4-1-C 添加本身具有質子傳遞能力的無機物 ....................................................17 2-4-2 磺酸化高分子薄膜複合薄膜 ........................................................................19 2-4-3 酸鹼高分子複合薄膜 ....................................................................................24 2-4-4 PBI 系列高分子薄膜 .....................................................................................30 2-4-4-1 修飾 PBI 系列高分子薄膜........................................................................31 2-4-4-2 PBI/無機物系列高分子薄膜...................................................................34 2-4-4-3 PBI/離子液體系列高分子薄膜..................................................................37 2-4-4-4 PBI 與其他高分子複合系列薄膜.............................................................42 2-4-5 添加氧化石墨烯之複合薄膜系列 ...............................................................43 2-5 電場誘導排列系列...................................................................................................47 第三章 實驗方法與原理........................................................................................................49 3-1 實驗儀器及原理........................................................................................................49 3-1-1 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)..........................49 3-1-2 X 光繞射儀(X-ray Diffraction, XRD) ........................................................50 3-1-3 熱重分析儀(Thermal Gravimetric Analysis, TGA)....................................50 3-1-4 傅立葉紅外線光譜儀(Infrared Spectroscopy, FTIR).................................51 3-1-5 X 射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) ...............51 3-1-6 薄膜磷酸摻雜程度(PA doping)以及膨潤程度(Swelling ratio) ................52 3-1-7 化學穩定性測試(Fenton’s test) ..................................................................52 3-1-8 質子導電度測試 .........................................................................................53 3-1-9 燃料電池效能測試 .....................................................................................53 3-2 物質合成及薄膜製備.............................................................................................54 3-2-1 氯磺化聚砜(Sulfochlorinated PSU,SCPSU)之合成..................................54 3-2-2 氧化石墨烯(Graphene Oxide,GO)製備.....................................................54 3-2-3 官能基化氧化石墨烯(ABPBI-GO)製備......................................................55 3-2-4 複合薄膜(ABPBI-GO-SCPSU)製備 ............................................................55 3-3 實驗藥品及儀器設備...............................................................................................56 3-4 實驗樣品命名規則...................................................................................................57 第四章 結果與討論................................................................................................................58 4-1 薄膜材料性質分析...................................................................................................59 4-1-1 氯磺化聚碸(Sulfochlorinated polysulfone)之官能基化程度鑑定 ..............59 4-1-2 官能基化氧化石墨烯之 FTIR 官能基鑑定..................................................62 4-1-3 官能基化氧化石墨烯之 XRD 結構鑑定......................................................63 4-2 複合薄膜性能測試...................................................................................................64 4-2-1 複合薄膜之磷酸摻雜量(PA doping)與膨潤度(Swelling ratio) ...................64 4-2-2 複合薄膜之磷酸保留能力 ............................................................................67 4-2-3 複合薄膜之 SEM 影像 ..................................................................................69 4-2-4 複合薄膜之 FTIR 官能基鑑定......................................................................71 4-2-5 複合薄膜之 XPS 鍵結鑑定..........................................................................72 4-2-6 複合薄膜之化學穩定性測試 .......................................................................74 4-2-7 複合薄膜之熱穩定性測試 ............................................................................75 4-2-8 複合薄膜之質子導電度測試 ........................................................................77 4-2-9 外加電場誘導製備複合薄膜之質子導電度測試 ........................................79 4-2-10 單電池測試 ..................................................................................................82 第五章 未來展望....................................................................................................................84 5-1 結論...................................................................................................................................84 5-2 未來展望與研究建議.......................................................................................................84 參考文獻..................................................................................................................................86

    [1] B. C. Steele and A. Heinzel, "Materials for fuel-cell technologies," Materials For
    Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from
    Nature Publishing Group, pp. 224-231, 2011.
    [2] R.E. Rosli, A.B. Sulong, W.R.W. Daud, M.A. Zulkifley, T. Husaini, M.I. Rosli, E.H.
    Majlan, M.A. Haque, "A review of high-temperature proton exchange membrane fuel
    cell (HT-PEMFC) system," International Journal of Hydrogen Energy, vol. 42, no. 14,
    pp. 9293-9314, 2017.
    [3] 白正偉, "磺酸化之磷酸鋯衍生物之製備與其在複合質子傳導膜上之應用," 碩士,
    材料科學與工程學研究所, 國立臺灣大學, 台北市, 2011.
    [4] 許嘉晉, "含有磷酸鋯衍生物之質子傳導複合膜:磷酸鋯衍生物之合成與複合膜製備及特性
    研究," 碩士, 材料科學與工程學研究所, 國立臺灣大學, 台北市, 2008.
    [5] 劉家瑋, "高溫質子交換膜燃料電池用聚苯基喹惡啉之合成與性質研究," 碩士, 材料科學
    與工程學研究所, 國立成功大學, 台南市, 2015.
    [6] S. L.-C. Hsu, C.-W. Liu, C.-H. Tu, H.-Y. Chuang, E. Bulycheva, and N. Belomoina,
    "Synthesis and properties of ABPPQ for high-temperature proton exchange membrane
    fuel cells," Polymer Bulletin, journal article vol. 75, no. 11, pp. 5321-5331, November 01
    2018.
    [7] 陳柏丞, "高磷酸摻混率之高溫質子交換膜," 碩士, 化學工程與材料科學學系, 元智
    大學, 桃園縣, 2015.
    [8] L. W. McKeen, "High-Temperature/High-Performance Polymers," pp. 389-417, 2017.
    [9] R. Naim, A. Ismail, H. Saidi, and E. Saion, "Development of sulfonated polysulfone
    membranes as a material for Proton Exchange Membrane (PEM)," Proceedings of the
    Regional Symppsium on Membrane Science Technology, pp. 21-25, 2004.
    [10] N. S. Dugala, A. S. Mann, and G. Rooprai, "Fuel Cell Technology-A Basic Overview,"
    in rd 3 National conference, 2016, p. 15.
    [11] D. Raoulji, J. Patel, and M. Patel, "Review Paper on a Fuel Cell Scooter," Engineering
    Science, vol. 3902, 2016.
    [12] Bose, S., Kuila, T., Nguyen, T. X. H., Kim, N. H., Lau, K. T., & Lee, J. H. . “Polymer
    membranes for high temperature proton exchange membrane fuel cell: recent advances
    and challenges.” Progress in Polymer Science, 36,pp. 813-843,2011.
    [13] Daniel, Garraín, and Lechón Yolanda. “Polymer Electrolyte Membrane Fuel Cells
    (PEMFC) in Automotive Applications: Environmental Relevance of the Manufacturing
    Stage.” Smart Grid and Renewable Energy, vol. 2, 2, 2011.
    [14] S. Authayanun, K. Im-orb, A. Arpornwichanop, A review of the development of high
    temperature proton exchange membrane fuel cells, Chinese Journal of Catalysis,.
    “Polymer Electrolyte Membrane Fuel Cells (PEMFC) in Automotive Applications:
    Environmental Relevance of the Manufacturing Stage.” Smart Grid and Renewable
    Energy, vol. 36, 4, 2015, pp. 473–483.
    [15] 劉政宏、王文琳、藍兆禾和曹蘭海,高溫型質子交換膜燃料電池雙極板之技術發
    展(上),工業材料雜誌,能源/儲能專欄,164-169 頁,2013 年 10 月。
    [16] 吳魁、解東來,高溫質子交換膜研究發展,化工進展,第 31 卷第 10 期,2202-
    2206 頁,2012 年
    [17] Ueki, T.; Watanabe, M. Macromolecules in ionic liquids: Progress, challenges, and
    opportunities. Macromolecules 2008, 41, 3739–3749.
    [18] L. Jheng, W. Chang, S, Hsu a, P. Cheng, “Durability of symmetrically and
    asymmetrically porous polybenzimidazole membranes for high trmperature proton
    exchange membrane fuel cells” , Journal of Power Sources, 323, pp57-66, 2016.
    [19] R. He, Q. Li, J. Jensen, N BJERRUM, “Doping Phosphoric Acid in Polybenzimidazole
    Membranes for High Temperature Proton Exchange Membrane Fuel Cells”, Journal of
    Polymer Science: Part A: Polymer Chemistry,Vol. 45, pp.2989-2997, 2007.
    [20] ZEIS, Roswitha. Materials and characterization techniques for high-temperature polymer
    electrolyte membrane fuel cells. Beilstein journal of nanotechnology, 2015, 6.1: 68-83.
    [21] 李英、張香平,用於高溫質子交換膜燃料電池的聚合物電解質膜研究進展,化工
    進展,第 37 卷第 9 期,2018 年。
    [22] J. Su, S. Zhang, Q. Liu, G. Hu and L. Zhang.J. Mater. Chem. A, 2021, 9, 5276
    [23] A. Anantaraman and C. Gardner, "Studies on ion-exchange membranes. Part 1. Effect of
    humidity on the conductivity of Nafion® ," Electroanalytical Chemistry, vol. 414, no. 2,
    pp. 115-120, 1996.
    [24] R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt and
    C. Rogers., "A polymer electrolyte for operation at temperatures up to 200 ºC,"
    Electrochemical Society, vol. 141, no. 4, pp. L46-L48, 1994.
    [25] Z. Florjańczyk, E. Wielgus-Barry, and Z. Połtarzewski, "Radiation-modified Nafion
    membranes for methanol fuel cells," Solid State Ionics, vol. 145, no. 1-4, pp. 119-126,
    2001.
    [26] J. Sun, L. Jordan, M. Forsyth, and D. MacFarlane, "Acid–organic base swollen polymer
    membranes," Electrochimica acta, vol. 46, no. 10-11, pp. 1703-1708, 2001.
    [27] H. Zhang, Q. Hu, X. Zheng, Y. Yin, H. Wu, and Z. Jiang, "Incorporating phosphoric
    acid-functionalized polydopamine into Nafion polymer by in situ sol-gel method for
    enhanced proton conductivity," Membrane Science, vol. 570, pp. 236-244, 2019.
    [28] K. Adjemian, S. Srinivasan, J. Benziger, and A. Bocarsly, "Investigation of PEMFC
    operation above 100 ºC employing perfluorosulfonic acid silicon oxide composite
    membranes," Power Sources, vol. 109, no. 2, pp. 356-364, 2002.
    [29] N. Miyake, J. Wainright, and R. Savinell, "Evaluation of a sol-gel derived Nafion/silica
    hybrid membrane for polymer electrolyte membrane fuel cell applications: II. Methanol
    uptake and methanol permeability," Electrochemical Society, vol. 148, no. 8, pp. A905-
    A909, 2001.
    [30] P. Antonucci, A. Arico, P. Cretı, E. Ramunni, and V. Antonucci, "Investigation of a
    direct methanol fuel cell based on a composite Nafion® -silica electrolyte for high
    temperature operation," Solid State Ionics, vol. 125, no. 1-4, pp. 431-437, 1999.
    [31] A. Saccà, A. Carbone, E. Passalacqua, A. D’Epifanio, S. Licoccia, E. Traversa, E. Sala,
    F. Traini, R. Ornelas, "Nafion–TiO2 hybrid membranes for medium temperature
    polymer electrolyte fuel cells (PEFCs)," Power Sources, vol. 152, pp. 16-21, 2005.
    [32] 張慈容, "氯氧化鋯摻合 Nafion 溶液性質及聚四氟碳化物/Nafion/磷酸鋯複合膜製
    作," 碩士, 化學工程與材料科學學系, 元智大學, 桃園縣, 2007.
    [33] S.-H. Kwak, T.-H. Yang, C.-S. Kim, and K. H. Yoon, "Nafion/mordenite hybrid
    membrane for high-temperature operation of polymer electrolyte membrane fuel cell,"
    Solid State Ionics, vol. 160, no. 3-4, pp. 309-315, 2003.
    [34] Y. Zhai, H. Zhang, J. Hu, and B. Yi, "Preparation and characterization of sulfated
    zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high
    temperature/low humidity," Membrane Science, vol. 280, no. 1-2, pp. 148-155, 2006.
    [35] D. Cozzi, C. de Bonis, A. D'Epifanio, B. Mecheri, A. C. Tavares, and S. Licoccia,
    "Organically functionalized titanium oxide/Nafion composite proton exchange
    membranes for fuel cells applications," Power Sources, vol. 248, pp. 1127-1132, 2014.
    [36] P. Costamagna, C. Yang, A. Bocarsly, and S. Srinivasan, "Nafion® 115/zirconium
    phosphate composite membranes for operation of PEMFCs above 100 C,"
    Electrochimica acta, vol. 47, no. 7, pp. 1023-1033, 2002.
    [37] V. Ramani, H. Kunz, and J. Fenton, "Effect of particle size reduction on the conductivity
    of Nafion® /phosphotungstic acid composite membranes," Membrane Science, vol. 266,
    no. 1-2, pp. 110-114, 2005.
    [38] Z.-G. Shao, P. Joghee, and I.-M. Hsing, "Preparation and characterization of hybrid
    Nafion–silica membrane doped with phosphotungstic acid for high temperature
    operation of proton exchange membrane fuel cells," Membrane Science, vol. 229, no. 1-
    2, pp. 43-51, 2004.
    [39] C. Y. Yen, C. H. Lee, Y. F. Lin, H. L. Lin, Y. H. Hsiao, S. H. Liao, C. Y. Chuang, C. C.
    Ma, "Sol–gel derived sulfonated-silica/Nafion® composite membrane for direct
    methanol fuel cell," Power Sources, vol. 173, no. 1, pp. 36-44, 2007.
    [40] R. S. Malik, P. Verma, and V. Choudhary, "A study of new anhydrous, conducting
    membranes based on composites of aprotic ionic liquid and cross-linked SPEEK for fuel
    cell application," Electrochimica Acta, vol. 152, pp. 352-359, 2015.
    [41] Z. Yue, Y.-B. Cai, and S. Xu, "Phosphoric acid-doped cross-linked sulfonated poly
    (imide-benzimidazole) for proton exchange membrane fuel cell applications," Membrane
    Science, vol. 501, pp. 220-227, 2016.
    [42] K. Kim, P. Heo, J. Han, J. Kim, and J.-C. Lee, "End-group cross-linked sulfonated poly
    (arylene ether sulfone) via thiol-ene click reaction for high-performance proton exchange
    membrane," Power Sources, vol. 401, pp. 20-28, 2018.
    [43] H. B. Park, C. H. Lee, J. Y. Sohn, Y. M. Lee, B. D. Freeman, and H. J. Kim, "Effect of
    crosslinked chain length in sulfonated polyimide membranes on water sorption, proton
    conduction, and methanol permeation properties," Membrane Science, vol. 285, no. 1-2,
    pp. 432-443, 2006.
    [44] C. H. Lee, C. H. Park, and Y. M. Lee, "Sulfonated polyimide membranes grafted with
    sulfoalkylated side chains for proton exchange membrane fuel cell (PEMFC)
    applications," Membrane Science, vol. 313, no. 1-2, pp. 199-206, 2008.
    [45] L. J. Murray, M. Dincă, and J. R. Long, "Hydrogen storage in metal–organic
    frameworks," Chemical Society Reviews, vol. 38, no. 5, pp. 1294-1314, 2009.
    [46] H. Chen, S. Y. Han, R. H. Liu, T. F. Chen, K. L. Bi, J. B. Liang, Y. H. Deng, C. Q. Wan,
    "High conductive, long-term durable, anhydrous proton conductive solid-state electrolyte
    based on a metal-organic framework impregnated with binary ionic liquids: Synthesis,
    characteristic and effect of anion," Power Sources, vol. 376, pp. 168-176, 2018.
    [47] N. Anahidzade, A. Abdolmaleki, M. Dinari, K. F. Tadavani, and M. Zhiani, "Metalorganic framework anchored sulfonated poly (ether sulfone) as a high temperature
    proton exchange membrane for fuel cells," Membrane Science, vol. 565, pp. 281-292,
    2018.
    [48] Q. Tang, K. Huang, G. Qian, and B. C. Benicewicz, "Phosphoric acid-imbibed threedimensional polyacrylamide/poly (vinyl alcohol) hydrogel as a new class of hightemperature proton exchange membrane," Power Sources, vol. 229, pp. 36-41, 2013.
    [49] Z. Li, Y. Yin, and L. Liu, "Three–Dimensional Polyacrylamide–Poly (Ethylene
    Glycol)/Phosphoric Acid for High–Temperature Proton Exchange Membranes,"
    Polymers Polymer Composites, vol. 23, no. 3, pp. 151-158, 2015.
    [50] W. H. Chen, W. C. Liao, Y. S. Sohn, M. Fadeev, A. Cecconello, R. Nechushtai, I.
    Willner "Stimuli-Responsive Nucleic Acid-Based Polyacrylamide Hydrogel-Coated
    Metal-Organic Framework Nanoparticles for Controlled Drug Release," Advanced
    Functional Materials, vol. 28, no. 8, p. 1705137, 2018.
    [51] F. Bu, Y. Zhang, L. Hong, W. Zhao, D. Li, J. Li, H. Na, C. Zhao, "1, 2, 4-Triazole
    functionalized poly (arylene ether ketone) for high temperature proton exchange
    membrane with enhanced oxidative stability," Membrane Science, vol. 545, pp. 167-175,
    2018.
    [52] J. Wang, H. Bai, H. Zhang, L. Zhao, H. Chen, and Y. Li, "Anhydrous proton exchange
    membrane of sulfonated poly (ether ether ketone) enabled by polydopamine-modified
    silica nanoparticles," Electrochimica Acta, vol. 152, pp. 443-455, 2015.
    [53] H. R. Lohokare, H. D. Chaudhari, and U. K. Kharul, "Solvent and pH-stable poly (2, 5-
    benzimidazole)(ABPBI) based UF membranes: Preparation and characterizations,"
    Membrane Science, vol. 563, pp. 743-751, 2018.
    [54] M. Yamada and I. Honma, "Anhydrous proton conducting polymer electrolytes based on
    poly (vinylphosphonic acid)-heterocycle composite material," Polymer vol. 46, no. 9, pp.
    2986-2992, 2005.
    [55] Y. Fu, W. Li, and A. Manthiram, "Sulfonated polysulfone with 1, 3-1Hdibenzimidazole-benzene additive as a membrane for direct methanol fuel cells,"
    Membrane Science, vol. 310, no. 1-2, pp. 262-267, 2008.
    [56] X. Baozhong and O. Savadogo, "The Effect of Acid Doping on the Conductivity of
    Polybenzimidazole (PBI)," New Materials for Electrochemical Systems, vol. 2, pp. 95-
    102, 1999.
    [57] M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, and N. Ogata, "Synthesis and proton
    conductivity of thermally stable polymer electrolyte: poly (benzimidazole) complexes
    with strong acid molecules," Electrochimica Acta, vol. 45, no. 8-9, pp. 1395-1398, 2000.
    [58] S. Narayanan, S.-P. Yen, L. Liu, and S. Greenbaum, "Anhydrous proton-conducting
    polymeric electrolytes for fuel cells," Physical Chemistry B, vol. 110, no. 9, pp. 3942-
    3948, 2006
    [59] H. Zhang, X. Li, C. Zhao, T. Fu, Y. Shi, and H. Na, "Composite membranes based on
    highly sulfonated PEEK and PBI: Morphology characteristics and performance,"
    Membrane Science, vol. 308, no. 1, pp. 66-74, 2008.
    [60] N. N. Krishnan, D. Joseph, N. M. H. Duong, A. Konovalova, J.H. Jang, H.J. Kim, S. W.
    Nam, D. Henkensmeier, "Phosphoric acid doped crosslinked polybenzimidazole (PBIOO) blend membranes for high temperature polymer electrolyte fuel cells," Membrane
    Science, vol. 544, pp. 416-424, 2017.
    [61] 林海丹,高溫質子交換膜燃料電池用聚合物膜材料研究進展,化工新型材料,第
    45 卷第 4 期,2017 年 4 月。
    [62] 徐帆、範晨亮、徐宏杰、郭曉霞、房建華,用於高溫質子交換膜燃料電池的聚合
    物電解質膜研究進展,化工新型材料,第 40 卷第 12 期,2012 年 12 月。
    [63] X. Li, H. Ma, P. Wang, Z. Liu, J. Peng, W. Hu, Z. Jiang, B. Liu, “Construction of HighPerformance, High-Temperature Proton Exchange Membranes through Incorporating
    SiO2 Nanoparticles into Novel Cross-linked Polybenzimidazole Networks’’, ACS Appl.
    Mater. Interfaces, 11, pp.30735-30746, 2019.
    [64] H. Bai, W.S. Ho, “New sulfonated polybenzimidazole (SPBI) copolymer-based protonexchange membranes for fuel cells’’, Journal of the Taiwan Institute of Chemical
    Engineers, 40, pp. 260-267, 2009.
    [65] L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E.W. Choe, L. S. Ramanathan, S. Yu,
    B. C. Benicewicz, “Synthesis and Characterization of Pyridine‐Based
    Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell
    Applications’’, Fuel Cells, 5, pp. 287-295, 2005.
    [66] S. Chuang, S Hsu, M Yang, “Preparation and characterization of fluorine-containing
    polybenzimidazole/imidazole hybrid membranes for proton exchange membrane fuel
    cells’’, European Polymer Journal, 44, pp. 2202-2206, 2008.
    [67] S. Wang, G. Zhang, M. Han, H. Li, Y. Zhang, J. Ni, W. Ma, M. Li, J. Wang, Z. Liu, L.
    Zhang, H. Na, “Novel epoxy-based cross-linked polybenzimidazole for high temperature
    proton exchange membrane fuel cells’’, International journal of hydrogen energy, 36,
    pp. 8412-8421, 2011.
    [68] S. Bhadra, N Kimb, J Choib, K Rheec, J Lee. “Hyperbranched Poly(Benzimidazole-CoBenzene) with Honeycomb Structure as a Membrane for High-Temperature ProtonExchange Membrane Fuel Cells.” Journal of Power Sources, vol. 195, 2010, pp. 2470–
    2477.
    [69] 浦鴻汀、侯繼斅、楊正龍,有機/無機奈米複合質子交換膜的研究進展,材料科學
    與工程學報,第 23 卷第 1 期,2005 年。
    [70] F. Pinar, P. Canizares, M. Rodrigo, D. Ubeda, J. Lobato, “Titanium composite PBIbased membranes for high temperature polymer electrolyte membrane fuel cells. Effect
    on titanium dioxide amount’’, RSC Advances, 2, pp. 1547-1556, 2012.
    [71] G. Nawn, G. Pace, S. Lavina, K. Vezz, E. Negro, F. Bertasi, S. Polizzi, V. Noto,
    “Nanocomposite Membranes based on Polybenzimidazole and ZrO2 for HighTemperature Proton Exchange Membrane Fuel Cells’’, ChemSusChem, 8, pp. 1381-
    1393, 2015.
    [72] F. Liu, S. Wanga, J. Lib, X. Tiana, X. Wanga, H. Chena, Z. Wanga,
    “Polybenzimidazole/ionic-liquid-functional silica composite membranes with improved
    proton conductivity for high temperature proton exchange membrane fuel cells’’,
    Journal of Membrane Science, 541, pp. 492-499, 2017.
    [73] Q. Zhang, H. Liu, X. Li, R. Xu, J. Zhong, R. Chen, X. Gu, “Synthesis and
    Characterization of Polybenzimidazole/α-Zirconium Phosphate Composites as Proton
    Exchange Membrane’’, Polymer Engineering and Science, pp. 622-628, 2016.
    [74] 張敏超,離子液體的特性及其在化學上的應用,工業材料雜誌,325 期,77-83
    頁,2014 年 1 月。
    [75] A. Eguizábal, J. Lemus, M. Pina, “On the incorporation of protic ionic liquids imbibed in
    large pore zeolites to polybenzimidazole membranes for high temperature proton
    exchange membrane fuel cells’’, Journal of Power Sources, 222, pp. 483-492, 2013.
    [76] E. Ven, A. Chairuna, G. Merle, S. Benito, Z Borneman, K. Nijmeijer, “Ionic liquid
    doped polybenzimidazole membranes for high temperature Proton Exchange Membrane
    fuel cell applications’’, Journal of Power Sources, 222, pp. 202-209, 2013.
    [77] S. Maity, S. Singha, T. Jana, “Low acid leaching PEM for fuel cell based on
    polybenzimidazole nanocomposites with protic ionic liquid modified silica’’, Polymer,
    66, pp. 76-85, 2015.
    [78] 何曉燕、徐曉君、周文瑞、楊武,聚離子液體的合成及應用,高分子通報,第 5
    期,17 頁-28 頁,2013 年 5 月。
    [79] M. Li, L. Yang, S. Fang, S. Dong, “Novel polymeric ionic liquid membranes as solid
    polymer electrolytes with high ionic conductivity at moderate temperature’’, Journal of
    Membrane Science, 366, pp. 245-250, 2011.
    [80] A. Rewar, H. Chaudhari, R. Illathvalappil, K. Sreekumar, U. Kharul, “New approach of
    blending polymeric ionic liquid with polybenzimidazole (PBI) for enhancing physical
    and electrochemical properties’’, J. Mater. Chem. A, 2, pp. 14449-14458, 2014.
    [81] F. Liu, S. Wang, H. Chen, J. Li, X. Tian, X. Wang, T. Mao, J. Xu, Z. Wang, “CrossLinkable Polymeric Ionic Liquid Improve Phosphoric Acid Retention and Long-Term
    Conductivity Stability in Polybenzimidazole Based PEMs’’, ACS Sustainable Chem.
    Eng, 6, pp. 16352-16362, 2018.
    [82] K. Suzuki, Y. Iizuka, M. Tanaka, H. Kawakami, “Phosphoric acid-doped sulfonated
    polyimide and polybenzimidazole blend membranes: high proton transport at wide
    temperatures under low humidity conditions due to new proton transport pathways’’, J.
    Mater. Chem, 22, pp. 23767-23772, 2012.
    [83] V. Deimede, G. A. Voyiatzis, J. K. Kallitsis, L. Qingfeng, N. J. Bjerrum, “Miscibility
    Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell
    Applications’’ Macromolecules, 33, pp. 7609-7617, 2000.
    [84] J. Maiti, N. Kakati, S. P. Woo and Y. S. Yoon,” Nafion® based hybrid composite
    membrane containing GO and dihydrogen phosphate functionalized ionic liquid for high
    temperature polymer electrolyte membrane fuel cell” Compos. Sci. Technol., 2018, 155,
    189–196.
    [85] N. Uregen, K. Pehlivanoglu, Y. Ozdemir, Y. Devrim, “Development of
    polybenzimidazole/graphene oxide composite membranes for high temperature PEM
    fuel cells’’, International journal of hydrogen energy, pp. 1-12, 2016.
    [86] Y. Cai, Z. Yue, S. Xu. “A Novel Polybenzimidazole Composite Modified by Sulfonated
    Graphene Oxide for High Temperature Proton Exchange Membrane Fuel Cells in
    Anhydrous Atmosphere.” J. APPL. POLYM. SCI, vol. 134, no. 25, 2017.
    [87] T. Ko, K. Kim, M. Y. Lim, S. Y. Nam, T. H. Kim, S. K. Kima and J. C. Lee "Sulfonated
    poly (arylene ether sulfone) composite membranes having poly (2, 5-benzimidazole)-
    grafted graphene oxide for fuel cell applications," Materials Chemistry A, vol. 3, no. 41,
    pp. 20595-20606, 2015.
    [88] O. Gil-Castell, D. Galindo-Alfaro, S. Sánchez-Ballester, R. Teruel-Juanes, J. D. Badia,
    and A. Ribes-Greus, "Crosslinked Sulfonated Poly (vinyl alcohol)/Graphene Oxide
    Electrospun Nanofibers as Polyelectrolytes," Nanomaterials, vol. 9, no. 3, p. 397, 2019.
    [89] N. Yanai, M. Sindoro, J.Yan, and S.e Granick. “Electric Field-Induced Assembly of
    Monodisperse Polyhedral Metal–Organic Framework Crystals.” Journal of the American
    Chemical Society, vol. 135, no. 1, 2013, pp. 34–37.
    [90] ZHANG, W.; TANG, C.-M.; KERRES, J. “Development and Characterization of
    Sulfonated-Unmodiftied and Sulfonated-Aminated PSU Udel® Blend Membranes.”
    Separation and Purification Technology, vol. 22, 2001, pp. 209–221.
    [91] X. Qiu, M. Ueda, H. Hu, Y. Sui, X. Zhang, Orcid, and L. Wang ,“Poly (2, 5-
    Benzimidazole)-Grafted Graphene Oxide as an Effective Proton Conductor for
    Construction of Nanocomposite Proton Exchange Membrane.” ACS Applied Materials &
    Interfaces, vol. 9, no. 38, 2017, pp. 33049–33058.
    [92] Qiu, Y., Wang, Z., Owens, A. C., Kulaots, I., Chen, Y., Kane, A. B., & Hurt, R. H.
    “Antioxidant Chemistry of Graphene-Based Materials and Its Role in Oxidation
    Protection Technology.” Nanoscale, vol. 6, no. 20, 2014, pp. 11744–11755.
    [93] Chang, Y. N., Lai, J. Y., & Liu, Y. L. “Polybenzimidazole (PBI)-Functionalized Silica
    Nanoparticles Modified PBI Nanocomposite Membranes for Proton Exchange
    Membranes Fuel Cells.” Journal of Membrane Science, vol. 403, 2012, pp. 1–7

    QR CODE
    :::