跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊家俊
Jia-Jiun Yang
論文名稱: 無線感測網路圓碟覆蓋旅途問題
The Disk Covering Tour Problem for Wireless Sensor Networks
指導教授: 江振瑞
Jehn-Ruey Jiang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 39
中文關鍵詞: 無線感測網路覆蓋推銷員問題圓碟覆蓋問題K-means演算法
外文關鍵詞: Wireless Sensor Networks, Covering Salesman Problem, Disk Covering Problem, K-means algorithm
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線感測網路(Wireless Sensor Network, WSN) 中利用行動裝置來增進網路效能的議題十分熱門,例如利用行動資料騾(data mule)協助蒐集資料,或利用行動無線充電器(mobile wireless charger)進行無線充電等,但是行動裝置的自身電量上限往往成為限制其運作能力的因素之一。本篇論文主要目的為減少行動裝置在無線感測網路中運作過程的移動電量成本,我們提出圓碟覆蓋旅途問題(Disk Covering Tour Problem, DCTP)。此問題定義為在給定平面點及起始點的條件下,找出一條最小成本(cost)的旅途(tour),此旅途由起始點出發經過多個停駐點(tour stop)回到起始點。停駐點不需在給定的點上,但每一個給定的點至少要能與旅途中的某個停駐點的距離在給定的範圍內。旅途成本為行動裝置行加速、減速以離開或進入停駐點,以及定速經過兩個旅途中相鄰停駐點所耗費的電量,一般而言,停駐點個數與旅途長度均會影響旅途成本。文獻中與DCTP最為相關的議題莫非是旅行推銷員問題(Traveling Salesman Problem, TSP)和其變形問題,然而此問題限制旅途停駐點必須在給定的點上,此種限制不太貼切於一些感測網路的應用場景。我們認為停駐點個數越少可能會減少旅途成本,將減少停駐點個數問題視為圓碟覆蓋問題(Disk Covering Problem, DCP),提出Decreasing K-means (DK-means)演算法嘗試找出近似(nearly)最少圓碟來覆蓋所有給定點,再透過得到的停駐點以Lin-Kernighan heuristic(LKH)找出近似最短的旅途。透過實驗模擬我們比較其他相關方法(Covering Salesman Problem演算法與QI-Ferry方法),發現我們的方法具有旅途成本較小的優勢,而且當給定點個數越多時,我們方法的優勢會越來越明顯。


    Using mobile devices to enhance functions of wireless sensor networks (WSN) is a hot topic. For example, mobile devices can act as chargers to help with wireless charging or as data mules to help with data collection. However, energy consumption caused by mobility is the main factor to affect the use of mobile devices. In this thesis, we proposed Disk Covering Tour Problem (DCTP) addressing how to reduce the energy consumption caused by mobility. DCTP is concerned with how to find a minimum cost tour to cover a given set of points in the Euclidean plane. A tour starts from the starting position given, passes through several tour stops, and goes back to the starting point. A tour stop is not necessary on a given point, and a mobile device can stop at a tour stop to cover sensors within a specific distance. We consider the energy consumed by the acceleration, deceleration, and cruise between adjacent tour stops as the cost in DCTP. In general, the number of tour stops and tour length affect the cost significantly. Traveling Salesman Problem (TSP) and its variants are related to DCTP. But the tour stops in TSP should be on all given points. This may not be practical for some application of WSN. It is likely that fewer tour stops lead to lower costs. Disk Covering Problem (DCP) considers using the minimum number of disk (or equivalently tour stops) to cover given points is also related DCTP. We propose the Decreasing K-means (DK-means) algorithm to find nearly minimum number of tour stop to cover all given points and then find a nearly shortest tour passing through all tour stops with Lin-Kernighan heuristic (LKH). We simulate the proposed algorithm and compare it with related method, the Covering Salesman Problem algorithm and the QI-Ferry method. It is show that tours returned by the proposed algorithm lower costs than those returned by the related method. The proposed algorithm becomes more efficient when the given points are increasing.

    目錄 中文摘要 i Abstract ii 目錄 iii 圖目錄 iv 表目錄 v 一、緒論 1 二、相關研究 5 2.1 啟發式方法解覆蓋推銷員問題 5 2.2啟發式途程規劃演算法解 QI-Ferry 7 2.3 LKH演算法解旅行推銷員問題 10 2.4貪婪演算法(Greedy Algorithm)解部分節點覆蓋問題 12 三、問題定義與應用場景 15 3.1 圓碟覆蓋旅途問題(Disk Covering Tour Problem, DCTP) 15 3.2應用無線感測場景 16 四、提出方法 17 4.1 使用K-means演算法解覆蓋問題 17 4.2透過最小包含圓(Smallest Enclosing Circle Problem)修正群集中心 20 4.3 Decreasing K-means (DK-means) Method 21 五、實驗模擬 23 5.1 模擬環境 23 5.2 效能分析 25 5.3 效能評估 26 六、結論 30 參考文獻 31

    [1]Tzung-Shi Chen, Ping-Wen Wu, “On Data Collection Using Mobile
    Robot in Wireless Sensor Networks,” IEEE Transactions on
    Systems, Man and Cybernetics, Part A: Systems and Humans, Vol.41,
    pp. 1213–1224, 2011.
    [2]A.M. Zungeru, Li-Minn Ang, Kah Phooi Seng, “Termite-Hill: Routing
    towards a Mobile Sink for Improving Network Lifetime in Wireless
    Sensor Networks,” 2012 Third International Conference on
    Intelligent Systems, Modelling and Simulation (ISMS), pp. 622–
    627, 2012.
    [3]J. Current, D. Schilling, “The Covering Salesman Problem,”
    Transportation Sciences, vol. 23, pp. 208–213, 1989.
    [4]Ke Li, Hao Luan, Chien-Chung Shen, “QI-Ferry: Energy-Constrained
    Wireless Charging in Wireless Sensor Networks,” IEEE Wireless
    Communications and Networking Conference, pp. 2515–2520, 2012.
    [5]K. Helsgaun, “An effective implementation of the Lin-Kernighan
    traveling salesman heuristic,” European Journal of Operational
    Research, vol. 126, no. 1, pp. 106–130, 2000.
    [6]Guiling Wang, Mary Jane Irwin , Piotr Berman , Haoying Fu , and
    Tom La Porta, “Optimizing Sensor Movement Planning for Energy
    Efficiency,” in Proceedings of the 2005 International Symposium on
    Low Power Electronics and Design, pp. 215–220, 2005.
    [7]Bin Xiao, Jiannong Cao, Qingfeng Zhuge, Yi He, Edwin H.-M.
    Sha,“Approximation algorithms design for disk partial covering
    problem, ”in Proceedings. 7th International Symposium on Parallel
    Architectures, Algorithms and Networks, pp.104– 109, 2004.
    [8]Li-Wen Chen, Chi-Chang Chen, “The partial coverage problems in
    wireless sensor networks,” The Fourth Workshop on Wireless Ad Hoc
    and Sensor Networks, pp. 95–102, 2008.
    [9]Wasim El-Hajj, Mohsen Guizani, “A Fast Distributed and Efficient
    Virtual Backbone Election in Large Scale MANETs,” Global
    Telecommunications Conference, pp. 1–6, 2006.
    [10]S. Lin, B. W. Kernighan, “An Effective Heuristic Algorithm for
    the Traveling-Salesman Problem,” Operation Research, vol. 21,
    pp. 498–516, 1973.
    [11]J. Elzinga and D.W. Hearn, “The Minimum Covering Sphere
    Problem,” Management Science, Vol. 19, 96–104, 1972.
    [12]J. R.CURRENT, C. S. REVELLE AND J. L. COHON, “The Minimum
    Covering/ Shortest Path Problem,” Decision Sci. 19, pp.490–503,
    1954.

    QR CODE
    :::