| 研究生: |
陳麒任 Chi-Jen Chen |
|---|---|
| 論文名稱: |
考慮不確定性之降雨誘發山崩逆分析 Back analysis strength parameters in uncertainty for rainfall induced shallow landslide |
| 指導教授: |
董家鈞
Jia-Jyun Dong 劉家男 Chia-Nan Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 貝氏定理 、土壤強度參數 、逆分析 、TRIGRS 、淺層山崩 |
| 外文關鍵詞: | soil strength parameters, back analysis, TRIGRS, shallow landslide, Bayes’s theorem |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用物理模型進行山崩潛感分析最大的難題為分析參數不易取得,由逆分析取得參數為可行方法之一,然而,強度參數逆分析常有非唯一性問題,以致於難以客觀決定單一組最佳參數,故如何解決強度參數逆分析非唯一性問題為逆分析重要課題。本研究選定埔里鎮仁愛鄉投71縣道為研究區,並利用民國90年桃芝颱風事件之山崩目錄進行有效凝聚力與有效摩擦角之定值式逆分析。最後再利用貝式定理逆算有效凝聚力平均值與有效摩擦角平均值之機率分布,並以8組實驗值(摩擦角為29.2-42.3度,凝聚力為0-22.67 kPa)驗證定值式與機率式逆分析結果。定值式逆分析參數方法是先挑選模擬-實際崩塌面積比介於0.8至1.2之參數,再以總正確率越高,則參數越佳。機率式逆分析則分兩種情況,其一為考慮山崩目錄更新參數結果,其二為了增加逆分析結果之可信度,故同時考慮實驗值和山崩目錄更新參數。結果顯示,定值式逆分析最佳之參數,其凝聚力平均值為14 kPa,摩擦角平均值為34度,與實際值範圍大致相符,但仍具參數非唯一性。機率式逆分析中,僅考慮山崩目錄更新參數之結果顯示,機率最高之凝聚力平均值為3 kPa,摩擦角平均值為40度,結果雖與實驗值仍有差異,但結果顯示機率法逆分析應用於區域淺層山崩模型之可行性,且不再需要挑選唯一強度參數組,解決了參數非唯一性問題。同時考慮實驗值和山崩目錄更新參數之結果顯示,機率最高之凝聚力平均值為7 kPa,摩擦角平均值為37度。
It is difficult to get the soil strength parameters (effective cohesion and effective friction angle) when using the physical model in landslide susceptibility analysis. Back analysis is one possible way to get parameters. However, back analysis result has the non-unique problem so it is hard to determine unique parameter. So, a key problem in the back analysis is how to solve the non-unique problem. In this study we use deterministic back analysis and probabilistic back analysis to estimate average of effective cohesion and effective friction angle. Landslide inventory is caused by Typhoon Toraji event on 30/7/2001. At the same time, we verify the back analysis results by 8 experiment data(effective cohesion is 0-22.67 kPa, effective friction angle is 29.2-42.3 degree). Methodology of deterministic back analysis is that retain predict-real failure area ratio within 0.8 and 1.2 firstly. And then choose the maximum efficiency of parameter. Methodology of probabilistic back analysis has two different situations. One is only using landslide inventory for back analysis, the other one is using the experiment data and landslide inventory for back analysis. The deterministic back analysis results show that the best fit effective cohesion is 14 kPa and effective friction angle is 34 degree. Although back analysis result still have non-unique problem, it is coincide with experiment data. The first situation of probabilistic back analysis results show that the maximum probability effective cohesion is 3 kPa and effective friction angle is 40 degree. Second situation shows that the maximum probability of effective cohesion is 7 kPa and effective friction angle is 37 degree
1. Guimaraes, R. F., Montgomery, D. R., Greenberg, H. M.,Fernandes, N. F., Trancoso Gomes, R. A., de Carvalho, O. A., “Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro”, Engineering Geology, Vol. 69, pp. 99-108, 2003.
2. Salciarini, D., Godt, J. W., Savage, W. Z., Conversini, P., Baum, R. L., Michae, J. A., “Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy”, Landslides, Vol. 3, pp. 181-194, 2006.
3. Salciarini, D., Godt, J. W., Savage, W. Z., Baum, R. L., Conversini, P., “Modeling landslide recurrence in Seattle, Washington, USA”, Engineering Geology, Vol. 102(3-4), pp. 227-237, 2008.
4. Deb, S. K., El-Kadi, A. I., “Susceptibility assessment of shallow landslides on Oahu, Hawaii, under extreme-rainfall events”, Geomorphology, Vol. 108, pp. 219-233, 2009.
5. Baum, R. L., Savage, W. Z., Godt, J. W., “TRIGRS-A fortran program for transient rainfall infiltration and grid-based regional slope stability analysis, version 2.0”, USGS Open-file Report 2008-1159, 2008.
6. Kim, D., Im, S.,Lee, S. H.,Hong, Y., Cha, K. S., “Predicting the rainfall-triggered landslides in a forested mountain region using TRIGRS model”, Journal of Mountain Science, Vol. 7, pp. 83-91, 2010.
7. Pack, R. T., Tarboton, D. G., Goodwin, C. N., “Terrain stability mapping with SINMAP, technical description and users guide for version 1.0”, Report Number 4114-0, Terratech Consulting Ltd., Salmon Arm, B.C., Canada, 1998.
8. Montgomery, D. R., Dietrich, W. E., “A physically based model for the topographic control on shallow landsliding”, Water Resources Research, Vol. 30(4), pp. 1153-1171, 1994.
9. Godt, J. W., Baum, R. L., Savage, W. Z., Salciarini, D., Schulz, W. H., Harp E. L., “Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework”, Engineering Geology, Vol. 102, pp. 214-226, 2008.
10. 李錫堤,「山崩及土石流災害分析的方法學回顧與展望」,台灣公共工程學刊,第五卷,第一期,2009年。
11. Kohavi, R., Provost, F., “Glossary of terms”, Machine Learning, Vol 30(2-3), pp. 271-274, 1998.
12. 林衍丞,「廣域山崩潛感分析模型力學-水力參數逆分析」,國立中央大學,碩士論文,2009年。
13. 鐘欣翰,「考慮水文模式的地形穩定分析-以匹亞溪集水區為例」,國立中央大學,碩士論文,2008年。
14. 中興工程顧問社,「易淹水地區上游集水區地質調查與資料庫建置第1階段實施計劃-集水區水文地質對坡地穩定性影響之調查評估-教育訓練」,經濟部中央地質調查所,2008年。
15. Begueria, S., “Validation and evaluation of predictive models in hazard assessment and risk management”, Natural Hazards, Vol. 37, pp. 315-319, 2006.
16. 陳嬑璇,「溪頭地區山崩潛感圖製作研究」,國立臺灣大學土木工程研究所,碩士論文,2002年。
17. 國立交通大學防災工程研究中心,石門水庫集水區崩塌與庫區淤積風險評估研究(2/3),經濟部水利署,民國96年。
18. Jiang, J. C., Yamagami, T., “A new back analysis of strength parameters from single slips”, Computers and Geotechnics, Vol. 35, pp. 286-291, 2008.
19. Zhang, L. L., Zhang, J., Zhang, L. M., Tang, W. H., “Back analysis of slope failure with Markov chain Monte Carlo simulation”, Computers and Geotechnics, Vol. 37, pp. 905-912, 2010.
20. Gilbert, R. B., Wright, S. G., Liedtke, E., “Uncertainty in back analysis of slopes: Kettleman Hills case history”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124(12), pp. 1167-1176, 1998.
21. Taylor, D. W., Fundamentals of Soil Mechanics, Wiley, New York, 1948.
22. Turner, A. K., Schuster, R. L., Landslides investigation and mitigation, National Academy of Science, USA, 1996.
23. 莊緯璉,「運用判別分析進行山崩潛感分析之研究-以台灣中部國性地區為例」,國立中央大學,碩士論文,2005年。
24. Lee, C. T., Huang, C. C., Lee, J. F.,Pan, K. L., Lin, M. L., Dong, J. J., “Statistical approach to storm event-induced landslides susceptibility ”, Natural Hazards and Earth System Sciences, Vol. 8, pp. 941-960, 2008.
25. 鐘意晴,「區域性山崩潛感分析探討-以石門水庫集水區為例」,國立中央大學,碩士論文,2009年。
26. Baum, R. L., Coe, J. A., Godt J. W., Harp, E. L., Reid, M. E. M., Savage, W. Z., Schulz, W. H., Brien, D. L., Chleborad, A. F., McKenna, J. P., Michael, J. A., “Regional landslide-hazard assessment for Seattle, Washington, USA”, Landslides, Vol. 2, pp. 266-279, 2005.
27. Collins, B. D., Znidarcic, D., “Stability analysis of rainfall induce landslides”, Journal of Geotechnical and Geoenvironmental Engineering, pp. 362-372, 2004.
28. Richard, L., A., “Capillary conduction of liquids through porous mediums”, Physics, Vol. 1, pp. 318-333, 1931.
29. 陳本康,「石門水庫集水區崩塌特性及潛勢評估研究」,國立中興大學水土保持學系,博士論文,2005年。
30. 朱聖心,「應用地理資訊系統製作地震及降雨所引致之山崩危險圖」,國立臺灣大學土木工程研究所,碩士論文,2001年。
31. 譚志豪、陳嬑璇、冀樹勇、顧承宇、蘇泰維、李錦發和費立沅,「降雨誘發山崩災害之預警系統初步研究」,流域地質與坡地災害研討會,台灣台北,2008年。
32. Duncan, J. M., “The use of back analysis to reduce slope failure risk”, Civil Engineering Practice, Vol. 14(1), pp. 75-91, 1999.
33. Zentar, R., Hicher, P. Y., Moulin, G., “Identification of soil parameters by inverse analysis”, Computers and Geotechnics, Vol. 28, pp. 129-144, 2001.
34. Tiwari, B., Brandon, T. L., Marui, H., Tuladhar, G. R., “Comparison of residual shear strengths from back analysis and ring shear tests on undisturbed and remolded specimens”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131(9), 1071-1079, 2005.
35. Friedel, M. J., “Coupled inverse modeling of vadose zone water, heat, and solute transport: calibration constraint, parameter nonuniqueness, and predictive uncertainty”, Journal of Hydrology, Vol. 312, pp. 148-175, 2005.
36. Sorbino, G., Sica, C., Cascini, L., “Susceptibility analysis of shallow landslides source areas using physically based models”, Natural Hazards, Vol. 53(2), pp. 313-332, 2009.
37. Iverson, R. M., “Landslide triggering by rain infiltration”, Water Resources Research, Vol. 36(7), pp. 1897-1910, 2000.
38. Savage, W. Z., Godt, J. W., Baum, R. L., “A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration, in Rickenmann, D., and Chen, C., eds., Debris-flow hazards mitigation-mechanics, prediction and assessment”, Rotterdam, Millpress, pp. 179-187, 2003.
39. Chen, J. C., Jan, C. D.., “Probabilistic analysis of landslide potential of an inclined uniform soil layer of infinite length: theorem”, Environmental Geology, Vol. 51(7), pp.1239-1248, 2007.
40. 何春蓀,臺灣地質概論,經濟部中央地質調查所,台北,1986年。
41. 中興工程顧問社,「南投縣投71線道路卓社隧道東口至法治村路段復健工程簡易水土保持申報書」,台北,台灣,2004年。
42. 吳佳郡,「降雨誘發山崩之潛感分析初探」,國立暨南大學,碩士論文,2006年。
43. Burrough, P. A., McDonell, R. A., Principles of Geographical Information Systems, Oxford University Press, New York, 1998.
44. 林伯勳、許振崑、冀樹勇,「集水區土壤厚度經驗式應用分析」,中興工程季刊,第111期,35-45頁,2011年。
45. Matsuo, M., Kuroda, K., “Probabilistic approach to design of embankments”, Soils and Foundations, Vol. 14(2), pp. 1-17, 1974.
46. Matsuo, M., “Reliability in embankment design”, M.I.T. Dept. of Civil Engineering Research Report, Cambridge, MA: Massachusetts Institute of Technology, pp. R76-33, 1976.
47. Chowdhury, R. N., Xu, D. W., “Rational polynomial technique in slope stability analysis”, Journal of Geotechnical Engineering Division, Vo. 119(12), pp. 1910-1928, 1993.
48. Christian, J. T., Ladd, C. C. Baecher, G.B., “Reliability applied to slope stability analysis”, Journal of Geotechnical Engineering Division, Vol. 120(12), pp. 2180-2207, 1994.
49. Dettinger, M. D., Wilson, J. L., “First-order analysis of uncertainty in numerical models of groundwater flow, Part 1-Mathematical Development. Water Resources Research, Vol. 17(1), pp. 146-161, 1981.
50. Tobutt, D. C., “Monte Carlo simulation methods for slope stability”, Computer and Geosciences, Vol. 8(2), pp. 199-208, 1982.