跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃春雅
Cheun-Yea Hwang
論文名稱: 演化式賽局於投資策略之研究
A Study of Evolutionary Game on Investment Strategy
指導教授: 侯永昌
Y. C. Hou
陳稼興
J. S. Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理學系
Department of Information Management
畢業學年度: 91
語文別: 中文
論文頁數: 54
中文關鍵詞: 投資策略賽局遺傳演算法
外文關鍵詞: Investment Strategy, Game, Genetic Algorithms
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將投資行為視為投資人與市場的賽局,考量投資人參與此賽局的經驗,應用遺傳演算法發展投資策略。賽局理論為一種分析策略性行為的方法,而所謂策略性行為是將對方會如何反應加入考量,而最終制定決策的行為。本研究探討三種不同型式的投資策略,當日沖銷、 交易策略、 資金管理。依此種賽局架構發展出的投資策略績效如下:(1) 當日沖銷策略,訓練期GA策略績效僅劣於全勝策略,而測試期的GA策略績效居中,但亦遠優於全敗策略;(2) 交易策略,GA策略在訓練期的績效,勝過原本的交易策略,但在測試期則不明顯優於原交易策略;(3) 資金管理,訓練期間 GA 所發展之資金管理策略有較高的期末淨值,但同時亦擁有較高的風險,在測試期間期末淨值雖略低於原策略,但同時其風險亦較小。


    The investment in stock market is viewed as a game of investor and market in this study. We consider the experience investors participating in the investment game, and apply genetic algorithms to develop investment strategy. Game theory is a bag of analytical tools designed to help us understand the phenomena that we observe when decision-makers interact. We study three different types of investment strategies: day trading, trade strategy and money management. The empirical results show that genetic algorithms are very good at developing investment strategies in training periods, but these strategies may not carry over to testing periods.

    1 緒論 1.1 研究景及研究動機 1.2 研究目的 1.3 研究方法及結果簡介 1.4 研究貢獻 1.5 論文架構 2 文獻探討 2.1 證券市場 2.2 賽局理論 2.3 遺傳演算法 3 研究方法 3.1 研究架構 3.2 遺傳演算法架構 4 實驗結果與討論 4.1 實驗設計 4.2 資料說明 4.3 實驗環境 4.4 移動視窗 4.5 實驗數據 4.6 實驗討論 5 結論與建議 5.1 研究結論 5.2 研究貢獻 5.3 未來研究方向 附錄: 原始實驗數據 參考文獻

    杜金龍 (2002),技術指標在台灣股市應用的訣竅,財訊出版社。
    林維垣 (2000),“有關對調適與演化機制的再審思-在財務時間序列資料中應用的統計分析”,國立政治大學經濟學系博士論文。
    袁康 (1997),股票百科,金錢文化。
    張振魁 (民八十九),“以類神經網路提高股票單日交易策略之獲利”,國立中央大學資訊管理學系碩士論文。
    張維迎, 劉楚俊 (民八十八),賽局理論與信息經濟學,茂昌圖書。
    謝明瑞, 劉聰衡, 林景春, 陳錦峰(民九十一),證券市場,國立空中大學印行。
    Axelrod,R. (1987), “The Evolution of Strategies in the Iterated Prisoner’s Dilemma,” Genetic Algorithms and Simulated Annealing, L. Davis (ed.), Pitman, London, pp 32-41.
    Fogel, D B. (1998), “The Iterated Prisoner''s Dilemma”, in Evolutionary Computation , edited by L. Davis, IEEE PRESS, 541-543.
    Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley.
    Hamada, T., H. Kawamura, M Yamanoto and A. Ohuchi (2002), “A Study on Behavioral Structure of Artificial Market Based on Adaptive Game”, IEEE, pp 2011-2016.
    Holland, J. H. (1975), Adaptation in Natural and Artificial System, The MIT Press.
    Hunter (1995a), “Sugal Programming Manual,” http://www.dur.ac.uk/andrew1.hunter/Sugal/
    Hunter (1995b), “Sugal User Manual,” http://www.dur.ac.uk/andrew1.hunter/Sugal/.
    Joshi, S., J. Parker and M. A. Bedau (2002), “Financial Markets can be at Sub-Optimal Equilibria” Computational Economics, pp 5-23.
    Keynes, J. M. (1936), The General Theory of Employment, Interest and Money, London: Macmillan.
    Osborne, M. J. and A. Rubinstein (1994), A Course in Game Theory, The MIT Press.
    Riechmann, T. (2000), “Genetic algorithm learning and evolutionary games”, Journal of Economic Dynamics & Control.
    Shelton, R. B. (1997), Gaming the Market – Applying Game Theory to Create Wining Trading Strategies, John Wiley & Sons, INC.

    QR CODE
    :::