跳到主要內容

簡易檢索 / 詳目顯示

研究生: 盧宗祺
Tsung-Chi Lu
論文名稱: 細胞穿透性p53蛋白促進血癌細胞凋亡但具有血漿不穩定性
Cell-penetrating p53 protein promotes leukemia cell apoptosis but is unstable in plasma
指導教授: 陳盛良
Shen-Liang Chen
劉俊揚
Jun-Yang Liou
口試委員:
學位類別: 博士
Doctor
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 141
中文關鍵詞: p53血癌細胞細胞穿透
外文關鍵詞: p53, leukemia, Cell-penetrating
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在人類的腫瘤細胞,特別是高級別癌症或轉移性腫瘤中,TP53基因的突變或缺陷尤為常見。p53是一個重要的轉錄因子,能調控細胞中許多基因的表現,其中其扮演抑癌基因的角色更是眾所矚目。p53蛋白可藉由參與控制細胞週期及促進細胞凋亡以預防細胞癌化的發生。因此,讓具突變型或缺陷型TP53基因的癌細胞重新獲得並恢復正常的 p53功能成為對抗癌症的一種積極性治療策略。在本研究中,我們開發一種重組的嵌合型p53蛋白,在其N端融合能促進轉錄活性的MyoD轉錄活化域,在其C端則鏈接具有細胞穿透能力的聚精氨酸多肽,並將其命名為M3-p53-R12 蛋白。該嵌合型p53蛋白以大腸桿菌作為表現宿主,並透過固定化金屬離子親和性層析法及透析取得重新折疊的蛋白質。研究證明,嵌合型p53蛋白具有穿過細胞膜並擁有遷移至細胞核的能力。此外該蛋白亦保留著p53蛋白的DNA結合及寡聚化等重要的轉錄因子特性。在細胞試驗中,嵌合型 p53 蛋白能抑制包含HL-60、Jurkat和K-562這三種血癌在內的多種TP53基因突變型腫瘤細胞的生長。在軟瓊脂細胞群落形成能力試驗表明嵌合型p53蛋白不僅能誘導血癌細胞的凋亡,還能抑制血癌細胞的生長。在Annexin V/PI 染色實驗中,更顯示嵌合型p53蛋白能選擇性誘導血癌細胞死亡,且不對間質幹細胞造成影響。這突顯出嵌合型p53蛋白具有選擇性對癌細胞造成傷害的能力。與此同時,我們成功建立了可用於研究嵌合型p53蛋白治療功效的異種血癌移植小鼠模型。然而,在嵌合型p53蛋白的血漿內代謝動力學研究中顯示,該蛋白對血漿中的蛋白酶非常敏感以致於其半衰期極短。這使得若想將嵌合型p53蛋白開發展成靜脈注射藥物,開發具有抗蛋白酶特性的次世代p53蛋白應為當務之急。


    TP53 mutants or defectives are commonly occurred in tumor cells, especially metastatic tumors. p53 protein is the most famous transcription factor, which plays a tumor suppressor role in regulating the cell cycle and promoting apoptosis of cancer cells. Therefore, restoring normal p53 activity in TP53-mutant cancer cells may be an aggressive strategy against cancer. In this study, we designed a chimeric p53 protein which N-and C-terminal fused with MyoD transcriptional activation domain and poly-arginine cell-penetrating peptide respectively. The chimeric p53 protein used E. coli as the expression host and was obtained by immobilized metal ion chromatography purification followed by a serial refolding process. The purified chimeric p53 protein gain-of-function of cell-penetration and preserves abilities of DNA binding and oligomerization. In addition, the chimeric p53 protein, named M3-p53-R12 protein, suppressed the growth of human TP53-mutated tumor cell lines, including three hematopoietic malignancy cell lines, HL-60, Jurkat, and K-562. The soft-agar assay demonstrated that the chimeric p53 protein does not only induce apoptosis but also arrests the cell cycle of leukemia cell lines. The Annexin V/PI staining revealed that the chimeric p53 protein induces the death of leukemia cell lines but has no apoptotic effect on mesenchymal stem cells, highlighting its selective impact on normal and tumor cells. A leukemia xenograft murine model has also been successfully developed for investigated the in vivo efficacy of the chimeric p53 protein. However, the metabolism kinetics in plasma showed the rapid biodegradation of the chimeric p53 protein, suggesting prevent hydrolysis from serine protease of chimeric p53 in the future is imperative.

    中文摘要 I Abstract II Declaration III Acknowledgement IV Publications arising from this thesis V Table of Contents VI List of Figures IX List of Tables X Abbreviations XI Chapter I. General Introduction 1 1.1 General introduction to TP53 gene 1 1.1.1 The brief history of p53 1 1.1.2 The functional domain of p53 2 1.1.3 p53 maintains genomic integrity 3 1.1.4 Mutant TP53 4 1.1.5 p53 and zinc ions 5 1.1.6 Epithelial-mesenchymal transition and p53 6 1.1.7 p53 and hematologic malignancies 6 1.1.8 p53-related gene therapy 7 1.1.8.1 Gendicine 7 1.1.8.2 Oncorine (H101) 9 1.2 General introduction to traditional cancer therapy for hematologic malignancies 10 1.2.1 Radiotherapy 10 1.2.2 Chemotherapy 11 1.2.3 Targeted therapy 11 1.3 General introduction to modern cancer therapy for hematologic malignancies 12 1.3.1 Hematopoietic stem cell transplantation 12 1.3.2 Cellular therapy 12 1.3.3 Cell-based gene therapy 13 1.3.3.1 Zalmoxis 14 1.3.3.2 Kymriah (tisagenlecleucel) 15 1.3.3.3 Yescarta (Axicabtagene Ciloleucel; axi-cel) 17 1.3.3.4 Tecartus (brexucabtagene autoleucel) 18 1.3.3.5 Breyanzi (lisocabtagene maraleucel) 19 1.3.3.6 Abecma (Idecabtagene vicleucel) 19 1.4 Introduction to current in vitro cancer gene therapy products 20 1.4.1 Rexin-G 21 1.4.2 Imlygic (T-VEC) 22 1.4.3 Rigvir (ECHO-7) 24 1.5 Introduction to protein transduction platform 25 1.6 Aim of this thesis 26 Chapter II. Materials and methods 29 Plasmids 29 Cell Lines and cell culture 29 Protein expression and purification 30 Protein oligomerization assay 31 Electrophoretic mobility shift assay (EMSA) 31 M3-p53-R12 transduction ability and translocation analysis 32 MTT assay 32 Annexin V /PI apoptosis detection 33 Soft agar assay 33 Mesenchymal stem cell (MSC) isolation and culture 33 Pick up reporter stable clones from soft agar 34 Busulfex® conditioning in NOD-SCID mice 34 Statistical analysis 34 Chapter III. Results 36 3.1 Small scale expression and solubility test of chimeric p53 proteins 36 3.2 Purification strategy of chimeric proteins in this study 37 3.3 Characterization of the refolded M3-p53-R12 protein 37 3.3.1 No interchain disulfide bond was formed during the M3-p53-R12 protein purification 37 3.3.2 Purified M3-p53-R12 protein has oligomerization potency 38 3.3.3 Purified M3-p53-R12 protein retains its DNA binding ability 38 3.3.4 Purified M3-p53-R12 protein could penetrate through the cell membrane and import to the nucleus 39 3.3.5 Durable stability analysis of purified M3-p53-R12 protein 39 3.4 M3-p53-R12 protein is cytotoxicity to p53 mutant cancer cell line 40 3.5 M3-p53-R12 has cytotoxic effect on leukemia cell lines 41 3.6 M3-p53-R12 has an apoptotic effect on leukemia cell lines 42 3.7 M3-p53-R12 protein suppresses leukemia cell proliferation 42 3.8 M3-p53-R12 protein has no apoptotic effect on normal cells 43 3.9 Jurkat-GFP and K-562-GFP stable cell lines can be used for tracking 43 3.10 In vitro analysis of fluorescence leukemia cell lines for preliminary study 44 3.11 The hematopoietic malignancy xenograft mouse model had developed 45 3.12 M3-p53-R12 protein is highly sensitive to enzymes in the plasma 47 3.13 Proline-endopeptidase and thrombin may be involved in the degradation of M3-p53-R12 protein in plasma 47 Chapter IV. Discussion and Conclusion 49 References 58 Figures 75 Tables 113 Appendices 116 Appendix A. The brief timeline and main findings of the p53 research. 116 Appendix B. Schematic diagram for the location and functional domain of p53. 117 Appendix C. Schematic diagram for the functional domain and PTM sites of the p53 protein 118 Appendix D. Schematic diagram for the p53-MDM2 negative feedback loop 119 Appendix E. TP53 mutations prevalence in sporadic cancers 120 Appendix F. Global cancer statistical analysis in 2020 121 Appendix G. Protein identification report of the N-terminal peptide sequencing of purified protein fragments. 123

    Abida, W. M., & Gu, W. (2008). p53-Dependent and p53-independent activation of autophagy by ARF. Cancer research, 68(2), 352-357. doi:10.1158/0008-5472.CAN-07-2069
    Abramson, J. S., Palomba, M. L., Gordon, L. I., Lunning, M. A., Wang, M., Arnason, J., . . . Siddiqi, T. (2020). Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet, 396(10254), 839-852. doi:10.1016/s0140-6736(20)31366-0
    Agarwal, M. L., Agarwal, A., Taylor, W. R., & Stark, G. R. (1995). p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 92(18), 8493-8497. doi:10.1073/pnas.92.18.8493
    Alberts, P., Olmane, E., Brokāne, L., Krastiņa, Z., Romanovska, M., Kupčs, K., . . . Venskus, D. (2016). Long-term treatment with the oncolytic ECHO-7 virus Rigvir of a melanoma stage IV M1c patient, a small cell lung cancer stage IIIA patient, and a histiocytic sarcoma stage IV patient-three case reports. Apmis, 124(10), 896-904. doi:10.1111/apm.12576
    Albrechtsen, N., Dornreiter, I., Grosse, F., Kim, E., Wiesmüller, L., & Deppert, W. (1999). Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene, 18(53), 7706-7717. doi:10.1038/sj.onc.1202952
    Andtbacka, R. H., Kaufman, H. L., Collichio, F., Amatruda, T., Senzer, N., Chesney, J., . . . Coffin, R. S. (2015). Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J Clin Oncol, 33(25), 2780-2788. doi:10.1200/jco.2014.58.3377
    Andtbacka, R. H. I., Collichio, F., Harrington, K. J., Middleton, M. R., Downey, G., Ӧhrling, K., & Kaufman, H. L. (2019). Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer, 7(1), 145. doi:10.1186/s40425-019-0623-z
    Asghari, H., & Talati, C. (2020). Tumor protein 53 mutations in acute myeloid leukemia: conventional induction chemotherapy or novel therapeutics. Curr Opin Hematol, 27(2), 66-75. doi:10.1097/moh.0000000000000568
    Babiker, H. M., Riaz, I. B., Husnain, M., & Borad, M. J. (2017). Oncolytic virotherapy including Rigvir and standard therapies in malignant melanoma. Oncolytic virotherapy, 6, 11-18. doi:10.2147/OV.S100072
    Backendorf, C., & Noteborn, M. H. (2014). Apoptin towards safe and efficient anticancer therapies. Adv Exp Med Biol, 818, 39-59. doi:10.1007/978-1-4471-6458-6_3
    Baker, S. J., Fearon, E. R., Nigro, J. M., Hamilton, S. R., Preisinger, A. C., Jessup, J. M., . . . Vogelstein, B. (1989). Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science, 244(4901), 217-221. doi:10.1126/science.2649981
    Banerji, U., Affolter, A., Judson, I., Marais, R., & Workman, P. (2008). BRAF and NRAS mutations in melanoma: potential relationships to clinical response to HSP90 inhibitors. Mol Cancer Ther, 7(4), 737-739. doi:10.1158/1535-7163.Mct-08-0145
    Basu, S., Gnanapradeepan, K., Barnoud, T., Kung, C. P., Tavecchio, M., Scott, J., . . . Murphy, M. E. (2018). Mutant p53 controls tumor metabolism and metastasis by regulating PGC-1α. Genes Dev, 32(3-4), 230-243. doi:10.1101/gad.309062.117
    Beljanski, V., & Hiscott, J. (2012). The use of oncolytic viruses to overcome lung cancer drug resistance. Curr Opin Virol, 2(5), 629-635. doi:10.1016/j.coviro.2012.07.006
    Bell, S., Hansen, S., & Buchner, J. (2002). Refolding and structural characterization of the human p53 tumor suppressor protein. Biophys Chem, 96(2-3), 243-257. doi:10.1016/s0301-4622(02)00011-x
    Belting, M. (2003). Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci, 28(3), 145-151. doi:10.1016/s0968-0004(03)00031-8
    Biaoxue, R., Hui, P., Wenlong, G., & Shuanying, Y. (2016). Evaluation of efficacy and safety for recombinant human adenovirus-p53 in the control of the malignant pleural effusions via thoracic perfusion. Sci Rep, 6, 39355. doi:10.1038/srep39355
    Bilsland, A. E., Spiliopoulou, P., & Evans, T. R. (2016). Virotherapy: cancer gene therapy at last? F1000Res, 5. doi:10.12688/f1000research.8211.1
    Bischoff, J. R., Kirn, D. H., Williams, A., Heise, C., Horn, S., Muna, M., . . . McCormick, F. (1996). An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science, 274(5286), 373-376. doi:10.1126/science.274.5286.373
    Blazar, B. R., Hill, G. R., & Murphy, W. J. (2020). Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol, 17(8), 475-492. doi:10.1038/s41571-020-0356-4
    Boehme, K. A., & Blattner, C. (2009). Regulation of p53--insights into a complex process. Crit Rev Biochem Mol Biol, 44(6), 367-392. doi:10.3109/10409230903401507
    Bommareddy, P. K., Patel, A., Hossain, S., & Kaufman, H. L. (2017). Talimogene Laherparepvec (T-VEC) and Other Oncolytic Viruses for the Treatment of Melanoma. Am J Clin Dermatol, 18(1), 1-15. doi:10.1007/s40257-016-0238-9
    Bonini, C., Peccatori, J., Stanghellini, M. T., Vago, L., Bondanza, A., Cieri, N., . . . Ciceri, F. (2015). Haploidentical HSCT: a 15-year experience at San Raffaele. Bone Marrow Transplant, 50 Suppl 2, S67-71. doi:10.1038/bmt.2015.99
    Bonyhadi, M., Frohlich, M., Rasmussen, A., Ferrand, C., Grosmaire, L., Robinet, E., . . . Berenson, R. J. (2005). In vitro engagement of CD3 and CD28 corrects T cell defects in chronic lymphocytic leukemia. J Immunol, 174(4), 2366-2375. doi:10.4049/jimmunol.174.4.2366
    Brady, C. A., Jiang, D., Mello, S. S., Johnson, T. M., Jarvis, L. A., Kozak, M. M., . . . Attardi, L. D. (2011). Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell, 145(4), 571-583. doi:10.1016/j.cell.2011.03.035
    Bressy, C., Hastie, E., & Grdzelishvili, V. Z. (2017). Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy. Mol Ther Oncolytics, 5, 20-40. doi:10.1016/j.omto.2017.03.002
    Cao, Z., Livas, T., & Kyprianou, N. (2016). Anoikis and EMT: Lethal "Liaisons" during Cancer Progression. Crit Rev Oncog, 21(3-4), 155-168. doi:10.1615/CritRevOncog.2016016955
    Chang, C. J., Chao, C. H., Xia, W., Yang, J. Y., Xiong, Y., Li, C. W., . . . Hung, M. C. (2011). p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol, 13(3), 317-323. doi:10.1038/ncb2173
    Chawla, S. P., Bruckner, H., Morse, M. A., Assudani, N., Hall, F. L., & Gordon, E. M. (2018). A Phase I-II Study Using Rexin-G Tumor-Targeted Retrovector Encoding a Dominant-Negative Cyclin G1 Inhibitor for Advanced Pancreatic Cancer. Molecular therapy oncolytics, 12, 56-67. doi:10.1016/j.omto.2018.12.005
    Chen, S., Chen, J., Xi, W., Xu, W., & Yin, G. (2014). Clinical therapeutic effect and biological monitoring of p53 gene in advanced hepatocellular carcinoma. Am J Clin Oncol, 37(1), 24-29. doi:10.1097/COC.0b013e3181fe4688
    Cheng, L., Yang, L., Meng, F., & Zhong, Z. (2018). Protein Nanotherapeutics as an Emerging Modality for Cancer Therapy. Adv Healthc Mater, 7(20), e1800685. doi:10.1002/adhm.201800685
    Chesney, J., Puzanov, I., Collichio, F., Singh, P., Milhem, M. M., Glaspy, J., . . . Kaufman, H. L. (2018). Randomized, Open-Label Phase II Study Evaluating the Efficacy and Safety of Talimogene Laherparepvec in Combination With Ipilimumab Versus Ipilimumab Alone in Patients With Advanced, Unresectable Melanoma. J Clin Oncol, 36(17), 1658-1667. doi:10.1200/jco.2017.73.7379
    Cho, Y., Gorina, S., Jeffrey, P. D., & Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 265(5170), 346-355. doi:10.1126/science.8023157
    Chow, V. A., Shadman, M., & Gopal, A. K. (2018). Translating anti-CD19 CAR T-cell therapy into clinical practice for relapsed/refractory diffuse large B-cell lymphoma. Blood, 132(8), 777-781. doi:10.1182/blood-2018-04-839217
    Christianson, H. C., & Belting, M. (2014). Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol, 35, 51-55. doi:10.1016/j.matbio.2013.10.004
    Ciceri, F., Bonini, C., Stanghellini, M. T., Bondanza, A., Traversari, C., Salomoni, M., . . . Bordignon, C. (2009). Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol, 10(5), 489-500. doi:10.1016/s1470-2045(09)70074-9
    Conry, R. M., Westbrook, B., McKee, S., & Norwood, T. G. (2018). Talimogene laherparepvec: First in class oncolytic virotherapy. Human vaccines & immunotherapeutics, 14(4), 839-846. doi:10.1080/21645515.2017.1412896
    DeLeo, A. B., Jay, G., Appella, E., Dubois, G. C., Law, L. W., & Old, L. J. (1979). Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A, 76(5), 2420-2424. doi:10.1073/pnas.76.5.2420
    Delphin, C., Cahen, P., Lawrence, J. J., & Baudier, J. (1994). Characterization of baculovirus recombinant wild-type p53. Dimerization of p53 is required for high-affinity DNA binding and cysteine oxidation inhibits p53 DNA binding. Eur J Biochem, 223(2), 683-692. doi:10.1111/j.1432-1033.1994.tb19041.x
    Dippold, W. G., Jay, G., DeLeo, A. B., Khoury, G., & Old, L. J. (1981). p53 transformation-related protein: detection by monoclonal antibody in mouse and human cells. Proc Natl Acad Sci U S A, 78(3), 1695-1699. doi:10.1073/pnas.78.3.1695
    Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., & Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356(6366), 215-221. doi:10.1038/356215a0
    Doniņa, S., Strēle, I., Proboka, G., Auziņš, J., Alberts, P., Jonsson, B., . . . Muceniece, A. (2015). Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res, 25(5), 421-426. doi:10.1097/cmr.0000000000000180
    Duan, J., & Nilsson, L. (2006). Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain. Biochemistry, 45(24), 7483-7492. doi:10.1021/bi0603165
    Eliyahu, D., Michalovitz, D., Eliyahu, S., Pinhasi-Kimhi, O., & Oren, M. (1989). Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci U S A, 86(22), 8763-8767.
    Emami Riedmaier, A., Fisel, P., Nies, A. T., Schaeffeler, E., & Schwab, M. (2013). Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharmacol Sci, 34(2), 126-135. doi:10.1016/j.tips.2012.11.005
    Endo, Y., Sakai, R., Ouchi, M., Onimatsu, H., Hioki, M., Kagawa, S., . . . Fujiwara, T. (2008). Virus-mediated oncolysis induces danger signal and stimulates cytotoxic T-lymphocyte activity via proteasome activator upregulation. Oncogene, 27(17), 2375-2381. doi:10.1038/sj.onc.1210884
    Fahrer, J., Schweitzer, B., Fiedler, K., Langer, T., Gierschik, P., & Barth, H. (2013). C2-streptavidin mediates the delivery of biotin-conjugated tumor suppressor protein p53 into tumor cells. Bioconjug Chem, 24(4), 595-603. doi:10.1021/bc300563c
    Falzone, L., Salomone, S., & Libra, M. (2018). Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front Pharmacol, 9, 1300. doi:10.3389/fphar.2018.01300
    Farmer, G., Bargonetti, J., Zhu, H., Friedman, P., Prywes, R., & Prives, C. (1992). Wild-type p53 activates transcription in vitro. Nature, 358(6381), 83-86. doi:10.1038/358083a0
    Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell, 61(5), 759-767. doi:10.1016/0092-8674(90)90186-i
    Finlay, C. A., Hinds, P. W., & Levine, A. J. (1989). The p53 proto-oncogene can act as a suppressor of transformation. Cell, 57(7), 1083-1093. doi:10.1016/0092-8674(89)90045-7
    Finlay, C. A., Hinds, P. W., & Levine, A. J. (1989). The p53 proto-oncogene can act as a suppressor of transformation. Cell, 57(7), 1083-1093. doi:10.1016/0092-8674(89)90045-7
    Fischer, N. W., Prodeus, A., Malkin, D., & Gariépy, J. (2016). p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle, 15(23), 3210-3219. doi:10.1080/15384101.2016.1241917
    Friedman, K. M., Garrett, T. E., Evans, J. W., Horton, H. M., Latimer, H. J., Seidel, S. L., . . . Morgan, R. A. (2018). Effective Targeting of Multiple B-Cell Maturation Antigen-Expressing Hematological Malignances by Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cells. Hum Gene Ther, 29(5), 585-601. doi:10.1089/hum.2018.001
    Frisch, S. M., & Francis, H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol, 124(4), 619-626. doi:10.1083/jcb.124.4.619
    Fuchs, S. Y., Adler, V., Buschmann, T., Wu, X., & Ronai, Z. (1998). Mdm2 association with p53 targets its ubiquitination. Oncogene, 17(19), 2543-2547. doi:10.1038/sj.onc.1202200
    Funk, W. D., Pak, D. T., Karas, R. H., Wright, W. E., & Shay, J. W. (1992). A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol, 12(6), 2866-2871. doi:10.1128/mcb.12.6.2866
    Galanis, E., Carlson, S. K., Foster, N. R., Lowe, V., Quevedo, F., McWilliams, R. R., . . . Rubin, J. (2008). Phase I trial of a pathotropic retroviral vector expressing a cytocidal cyclin G1 construct (Rexin-G) in patients with advanced pancreatic cancer. Mol Ther, 16(5), 979-984. doi:10.1038/mt.2008.29
    Gambacorta, V., Gnani, D., Vago, L., & Di Micco, R. (2019). Epigenetic Therapies for Acute Myeloid Leukemia and Their Immune-Related Effects. Frontiers in cell and developmental biology, 7, 207-207. doi:10.3389/fcell.2019.00207
    Gencel-Augusto, J., & Lozano, G. (2020). p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes Dev, 34(17-18), 1128-1146. doi:10.1101/gad.340976.120
    Giaccia, A. J., & Kastan, M. B. (1998). The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev, 12(19), 2973-2983. doi:10.1101/gad.12.19.2973
    Giebel, S., Boumendil, A., Labopin, M., Seesaghur, A., Baron, F., Ciceri, F., . . . Nagler, A. (2019). Trends in the use of hematopoietic stem cell transplantation for adults with acute lymphoblastic leukemia in Europe: a report from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Ann Hematol, 98(10), 2389-2398. doi:10.1007/s00277-019-03771-2
    Giono, L. E., & Manfredi, J. J. (2006). The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol, 209(1), 13-20. doi:10.1002/jcp.20689
    Goldmann, C., Petry, H., Frye, S., Ast, O., Ebitsch, S., Jentsch, K. D., . . . Lüke, W. (1999). Molecular cloning and expression of major structural protein VP1 of the human polyomavirus JC virus: formation of virus-like particles useful for immunological and therapeutic studies. Journal of virology, 73(5), 4465-4469. doi:10.1128/JVI.73.5.4465-4469.1999
    Goldsmith, K., Chen, W., Johnson, D. C., & Hendricks, R. L. (1998). Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. The Journal of experimental medicine, 187(3), 341-348. doi:10.1084/jem.187.3.341
    Gordon, E. M., & Hall, F. L. (2009). The 'timely' development of Rexin-G: first targeted injectable gene vector (review). Int J Oncol, 35(2), 229-238.
    Gordon, E. M., & Hall, F. L. (2010). Rexin-G, a targeted genetic medicine for cancer. Expert Opin Biol Ther, 10(5), 819-832. doi:10.1517/14712598.2010.481666
    Gordon, E. M., Ravicz, J. R., Liu, S., Chawla, S. P., & Hall, F. L. (2018). Cell cycle checkpoint control: The cyclin G1/Mdm2/p53 axis emerges as a strategic target for broad-spectrum cancer gene therapy - A review of molecular mechanisms for oncologists. Molecular and clinical oncology, 9(2), 115-134. doi:10.3892/mco.2018.1657
    Greenblatt, M. S., Bennett, W. P., Hollstein, M., & Harris, C. C. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res, 54(18), 4855-4878.
    Greig, S. L. (2016). Talimogene Laherparepvec: First Global Approval. Drugs, 76(1), 147-154. doi:10.1007/s40265-015-0522-7
    Guan, Y. S., Liu, Y., He, Q., Li, X., Yang, L., Hu, Y., & La, Z. (2011). p53 gene therapy in combination with transcatheter arterial chemoembolization for HCC: one-year follow-up. World J Gastroenterol, 17(16), 2143-2149. doi:10.3748/wjg.v17.i16.2143
    Haferlach, C., Dicker, F., Herholz, H., Schnittger, S., Kern, W., & Haferlach, T. (2008). Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia, 22(8), 1539-1541. doi:10.1038/leu.2008.143
    Hall, F. L., Liu, L., Zhu, N. L., Stapfer, M., Anderson, W. F., Beart, R. W., & Gordon, E. M. (2000). Molecular engineering of matrix-targeted retroviral vectors incorporating a surveillance function inherent in von Willebrand factor. Hum Gene Ther, 11(7), 983-993. doi:10.1089/10430340050015293
    Han, D., Xu, Z., Zhuang, Y., Ye, Z., & Qian, Q. (2021). Current Progress in CAR-T Cell Therapy for Hematological Malignancies. J Cancer, 12(2), 326-334. doi:10.7150/jca.48976
    Hayakawa, J., Hsieh, M. M., Uchida, N., Phang, O., & Tisdale, J. F. (2009). Busulfan produces efficient human cell engraftment in NOD/LtSz-Scid IL2Rgamma(null) mice. Stem cells (Dayton, Ohio), 27(1), 175-182. doi:10.1634/stemcells.2008-0583
    Hidalgo, P., Ip, W. H., Dobner, T., & Gonzalez, R. A. (2019). The biology of the adenovirus E1B 55K protein. FEBS Lett, 593(24), 3504-3517. doi:10.1002/1873-3468.13694
    Hirai, H., Tani, T., Katoku-Kikyo, N., Kellner, S., Karian, P., Firpo, M., & Kikyo, N. (2011). Radical acceleration of nuclear reprogramming by chromatin remodeling with the transactivation domain of MyoD. Stem Cells, 29(9), 1349-1361. doi:10.1002/stem.684
    Hitzler, J., & Estey, E. (2019). Gemtuzumab ozogamicin in acute myeloid leukemia: act 2, with perhaps more to come. Haematologica, 104(1), 7-9. doi:10.3324/haematol.2018.205948
    Hodgson, J. (2021). Refreshing the biologic pipeline 2020. Nature biotechnology, 39(2), 135-143. doi:10.1038/s41587-021-00814-w
    Hu, Q., Chen, R., Teesalu, T., Ruoslahti, E., & Clegg, D. O. (2014). Reprogramming human retinal pigmented epithelial cells to neurons using recombinant proteins. Stem Cells Transl Med, 3(12), 1526-1534. doi:10.5966/sctm.2014-0038
    Huang, C. H., Chen, P. M., Lu, T. C., Kung, W. M., Chiou, T. J., Yang, M. H., . . . Wu, K. J. (2010). Purified recombinant TAT-homeobox B4 expands CD34(+) umbilical cord blood and peripheral blood progenitor cells ex vivo. Tissue Eng Part C Methods, 16(3), 487-496. doi:10.1089/ten.TEC.2009.0163
    Hunter, A. M., & Sallman, D. A. (2019). Current status and new treatment approaches in TP53 mutated AML. Best Pract Res Clin Haematol, 32(2), 134-144. doi:10.1016/j.beha.2019.05.004
    Imamura, J., Miyoshi, I., & Koeffler, H. P. (1994). p53 in hematologic malignancies. Blood, 84(8), 2412-2421.
    Inoue, A., Narumi, K., Matsubara, N., Sugawara, S., Saijo, Y., Satoh, K., & Nukiwa, T. (2000). Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene. Cancer Lett, 157(1), 105-112. doi:10.1016/s0304-3835(00)00480-8
    Inoue, M., Tomizawa, K., Matsushita, M., Lu, Y. F., Yokoyama, T., Yanai, H., . . . Matsui, H. (2006). p53 protein transduction therapy: successful targeting and inhibition of the growth of the bladder cancer cells. Eur Urol, 49(1), 161-168. doi:10.1016/j.eururo.2005.08.019
    Jackson, D. A., Symons, R. H., & Berg, P. (1972). Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A, 69(10), 2904-2909. doi:10.1073/pnas.69.10.2904
    Jaunalksne, I., Brokāne, L., Petroška, D., Rasa, A., & Alberts, P. (2020). ECHO-7 oncolytic virus Rigvir® in an adjuvant setting for stage I uveal melanoma; A retrospective case report. Am J Ophthalmol Case Rep, 17, 100615. doi:10.1016/j.ajoc.2020.100615
    Jiang, L., Liu, R., Wang, Y., Li, C., Xi, Q., Zhong, J., . . . Fang, Z. (2015). The role of Cyclin G1 in cellular proliferation and apoptosis of human epithelial ovarian cancer. J Mol Histol, 46(3), 291-302. doi:10.1007/s10735-015-9622-7
    Kabouridis, P. S. (2003). Biological applications of protein transduction technology. Trends in biotechnology, 21(11), 498-503. doi:10.1016/j.tibtech.2003.09.008
    Kalos, M., Levine, B. L., Porter, D. L., Katz, S., Grupp, S. A., Bagg, A., & June, C. H. (2011). T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med, 3(95), 95ra73. doi:10.1126/scitranslmed.3002842
    Kane, J. F. (1995). Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol, 6(5), 494-500. doi:10.1016/0958-1669(95)80082-4
    Kataoka, Y., Iwasaki, T., Kuroiwa, T., Seto, Y., Iwata, N., Hashimoto, N., . . . Kakishita, E. (2001). The role of donor T cells for target organ injuries in acute and chronic graft-versus-host disease. Immunology, 103(3), 310-318. doi:10.1046/j.1365-2567.2001.01240.x
    Kawamura, T., Suzuki, J., Wang, Y. V., Menendez, S., Morera, L. B., Raya, A., . . . Izpisúa Belmonte, J. C. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 460(7259), 1140-1144. doi:10.1038/nature08311
    Kennedy, J. A., & Barabé, F. (2008). Investigating human leukemogenesis: from cell lines to in vivo models of human leukemia. Leukemia, 22(11), 2029-2040. doi:10.1038/leu.2008.206
    Kim, S., Federman, N., Gordon, E. M., Hall, F. L., & Chawla, S. P. (2017). Rexin-G(®), a tumor-targeted retrovector for malignant peripheral nerve sheath tumor: A case report. Molecular and clinical oncology, 6(6), 861-865. doi:10.3892/mco.2017.1231
    Kleeff, J., Ishiwata, T., Kumbasar, A., Friess, H., Buchler, M. W., Lander, A. D., & Korc, M. (1998). The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest, 102(9), 1662-1673. doi:10.1172/jci4105
    Lafevre-Bernt, M., Wu, S., & Lin, X. (2008). Recombinant, refolded tetrameric p53 and gonadotropin-releasing hormone-p53 slow proliferation and induce apoptosis in p53-deficient cancer cells. Mol Cancer Ther, 7(6), 1420-1429. doi:10.1158/1535-7163.Mct-08-0078
    Lakin, N. D., & Jackson, S. P. (1999). Regulation of p53 in response to DNA damage. Oncogene, 18(53), 7644-7655. doi:10.1038/sj.onc.1203015
    Lamb, M. G., Rangarajan, H. G., Tullius, B. P., & Lee, D. A. (2021). Natural killer cell therapy for hematologic malignancies: successes, challenges, and the future. Stem Cell Res Ther, 12(1), 211. doi:10.1186/s13287-021-02277-x
    Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., . . . Weirauch, M. T. (2018). The Human Transcription Factors. Cell, 172(4), 650-665. doi:10.1016/j.cell.2018.01.029
    Lane, D. P. (1992). Cancer. p53, guardian of the genome. Nature, 358(6381), 15-16. doi:10.1038/358015a0
    Lane, D. P., Cheok, C. F., & Lain, S. (2010). p53-based cancer therapy. Cold Spring Harb Perspect Biol, 2(9), a001222. doi:10.1101/cshperspect.a001222
    Lane, D. P., & Crawford, L. V. (1979). T antigen is bound to a host protein in SV40-transformed cells. Nature, 278(5701), 261-263. doi:10.1038/278261a0
    Laptenko, O., Shiff, I., Freed-Pastor, W., Zupnick, A., Mattia, M., Freulich, E., . . . Prives, C. (2015). The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Molecular cell, 57(6), 1034-1046. doi:10.1016/j.molcel.2015.02.015
    Lee, D. W., Gardner, R., Porter, D. L., Louis, C. U., Ahmed, N., Jensen, M., . . . Mackall, C. L. (2014). Current concepts in the diagnosis and management of cytokine release syndrome. Blood, 124(2), 188-195. doi:10.1182/blood-2014-05-552729
    Leone, A., Di Gennaro, E., Bruzzese, F., Avallone, A., & Budillon, A. (2014). New perspective for an old antidiabetic drug: metformin as anticancer agent. Cancer Treat Res, 159, 355-376. doi:10.1007/978-3-642-38007-5_21
    Levine, A. J., & Oren, M. (2009). The first 30 years of p53: growing ever more complex. Nat Rev Cancer, 9(10), 749-758. doi:10.1038/nrc2723
    Li, J. L., Cai, Y., Zhang, S. W., Xiao, S. W., Li, X. F., Duan, Y. J., . . . Yan, K. (2011). Combination of Recombinant Adenovirus-p53 with Radiochemotherapy in Unresectable Pancreatic Carcinoma. Chin J Cancer Res, 23(3), 194-200. doi:10.1007/s11670-011-0194-0
    Li, L., Spendlove, I., Morgan, J., & Durrant, L. G. (2001). CD55 is over-expressed in the tumour environment. British journal of cancer, 84(1), 80-86. doi:10.1054/bjoc.2000.1570
    Li, P., Zhao, M., Parris, A. B., Feng, X., & Yang, X. (2015). p53 is required for metformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. Biochem Biophys Res Commun, 464(4), 1267-1274. doi:10.1016/j.bbrc.2015.07.117
    Li, Y., Huo, Y., Yu, L., & Wang, J. (2019). Quality Control and Nonclinical Research on CAR-T Cell Products: General Principles and Key Issues. Engineering, 5(1), 122-131. doi:https://doi.org/10.1016/j.eng.2018.12.003
    Li, Y., Li, B., Li, C. J., & Li, L. J. (2015). Key points of basic theories and clinical practice in rAd-p53 ( Gendicine ™) gene therapy for solid malignant tumors. Expert Opin Biol Ther, 15(3), 437-454. doi:10.1517/14712598.2015.990882
    Li, Y., Li, L. J., Wang, L. J., Zhang, Z., Gao, N., Liang, C. Y., . . . Han, B. (2014). Selective intra-arterial infusion of rAd-p53 with chemotherapy for advanced oral cancer: a randomized clinical trial. BMC Med, 12, 16. doi:10.1186/1741-7015-12-16
    Liang, M. (2018). Oncorine, the World First Oncolytic Virus Medicine and its Update in China. Curr Cancer Drug Targets, 18(2), 171-176. doi:10.2174/1568009618666171129221503
    Linzer, D. I., & Levine, A. J. (1979). Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell, 17(1), 43-52. doi:10.1016/0092-8674(79)90293-9
    Liu, B. L., Robinson, M., Han, Z. Q., Branston, R. H., English, C., Reay, P., . . . Coffin, R. S. (2003). ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther, 10(4), 292-303. doi:10.1038/sj.gt.3301885
    Liu, J., Pandya, P., & Afshar, S. (2021). Therapeutic Advances in Oncology. International journal of molecular sciences, 22(4), 2008. doi:10.3390/ijms22042008
    Liu, J., Zhang, C., Hu, W., & Feng, Z. (2015). Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett, 356(2 Pt A), 197-203. doi:10.1016/j.canlet.2013.12.025
    Liu, Y., Elf, S. E., Miyata, Y., Sashida, G., Liu, Y., Huang, G., . . . Nimer, S. D. (2009). p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell, 4(1), 37-48. doi:10.1016/j.stem.2008.11.006
    Locke, F. L., Ghobadi, A., Jacobson, C. A., Miklos, D. B., Lekakis, L. J., Oluwole, O. O., . . . Neelapu, S. S. (2019). Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol, 20(1), 31-42. doi:10.1016/s1470-2045(18)30864-7
    Locke, F. L., Neelapu, S. S., Bartlett, N. L., Lekakis, L. J., Miklos, D. B., Jacobson, C. A., . . . Go, W. Y. (2017). Clinical and biologic covariates of outcomes in ZUMA-1: A pivotal trial of axicabtagene ciloleucel (axi-cel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (r-NHL). Journal of Clinical Oncology, 35(15_suppl), 7512-7512. doi:10.1200/JCO.2017.35.15_suppl.7512
    Méplan, C., Richard, M. J., & Hainaut, P. (2000). Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene, 19(46), 5227-5236. doi:10.1038/sj.onc.1203907
    Ma, W. S., Ma, J. G., & Xing, L. N. (2017). Efficacy and safety of recombinant human adenovirus p53 combined with chemoradiotherapy in the treatment of recurrent nasopharyngeal carcinoma. Anticancer Drugs, 28(2), 230-236. doi:10.1097/CAD.0000000000000448
    Mantovani, F., Collavin, L., & Del Sal, G. (2019). Mutant p53 as a guardian of the cancer cell. Cell Death Differ, 26(2), 199-212. doi:10.1038/s41418-018-0246-9
    Marión, R. M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., . . . Blasco, M. A. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 460(7259), 1149-1153. doi:10.1038/nature08287
    Matlashewski, G., Lamb, P., Pim, D., Peacock, J., Crawford, L., & Benchimol, S. (1984). Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. Embo j, 3(13), 3257-3262.
    Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., . . . Grupp, S. A. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med, 371(16), 1507-1517. doi:10.1056/NEJMoa1407222
    McBride, O. W., Merry, D., & Givol, D. (1986). The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci U S A, 83(1), 130-134. doi:10.1073/pnas.83.1.130
    Menendez, S., Camus, S., & Izpisua Belmonte, J. C. (2010). p53: guardian of reprogramming. Cell Cycle, 9(19), 3887-3891. doi:10.4161/cc.9.19.13301
    Mercer, W. E., Shields, M. T., Amin, M., Sauve, G. J., Appella, E., Romano, J. W., & Ullrich, S. J. (1990). Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc Natl Acad Sci U S A, 87(16), 6166-6170. doi:10.1073/pnas.87.16.6166
    Michalovitz, D., Halevy, O., & Oren, M. (1990). Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell, 62(4), 671-680. doi:10.1016/0092-8674(90)90113-s
    Munshi, N. C., Anderson, L. D., Jr., Shah, N., Madduri, D., Berdeja, J., Lonial, S., . . . San-Miguel, J. (2021). Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med, 384(8), 705-716. doi:10.1056/NEJMoa2024850
    Nair, M. S., Lee, M. M., Bonnegarde-Bernard, A., Wallace, J. A., Dean, D. H., Ostrowski, M. C., . . . Chan, M. K. (2015). Cry protein crystals: a novel platform for protein delivery. PLoS One, 10(6), e0127669. doi:10.1371/journal.pone.0127669
    Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L., Miklos, D., Jacobson, C. A., . . . Go, W. Y. (2016). Kte-C19 (anti-CD19 CAR T Cells) Induces Complete Remissions in Patients with Refractory Diffuse Large B-Cell Lymphoma (DLBCL): Results from the Pivotal Phase 2 Zuma-1. Blood, 128(22), LBA-6-LBA-6. doi:10.1182/blood.V128.22.LBA-6.LBA-6
    Nguyen, K., Devidas, M., Cheng, S. C., La, M., Raetz, E. A., Carroll, W. L., . . . Children's Oncology, G. (2008). Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's Oncology Group study. Leukemia, 22(12), 2142-2150. doi:10.1038/leu.2008.251
    Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol, 2(1), a001008. doi:10.1101/cshperspect.a001008
    Pan, J. J., Zhang, S. W., Chen, C. B., Xiao, S. W., Sun, Y., Liu, C. Q., . . . Lu, Y. Y. (2009). Effect of recombinant adenovirus-p53 combined with radiotherapy on long-term prognosis of advanced nasopharyngeal carcinoma. J Clin Oncol, 27(5), 799-804. doi:10.1200/JCO.2008.18.9670
    Pant, V., Quintás-Cardama, A., & Lozano, G. (2012). The p53 pathway in hematopoiesis: lessons from mouse models, implications for humans. Blood, 120(26), 5118-5127. doi:10.1182/blood-2012-05-356014
    Paszkiewicz, P. J., Fräßle, S. P., Srivastava, S., Sommermeyer, D., Hudecek, M., Drexler, I., . . . Busch, D. H. (2016). Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest, 126(11), 4262-4272. doi:10.1172/jci84813
    Peng, Z. (2005). Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther, 16(9), 1016-1027. doi:10.1089/hum.2005.16.1016
    Peroja, P., Pedersen, M., Mantere, T., Nørgaard, P., Peltonen, J., Haapasaari, K. M., . . . Kuittinen, O. (2018). Mutation of TP53, translocation analysis and immunohistochemical expression of MYC, BCL-2 and BCL-6 in patients with DLBCL treated with R-CHOP. Sci Rep, 8(1), 14814. doi:10.1038/s41598-018-33230-3
    Piwoni, K., Jaeckel, G., Rasa, A., & Alberts, P. (2021). 4-Week repeated dose rat GLP toxicity study of oncolytic ECHO-7 virus Rigvir administered intramuscularly with a 4-week recovery period. Toxicol Rep, 8, 230-238. doi:10.1016/j.toxrep.2021.01.009
    Powell, E., Piwnica-Worms, D., & Piwnica-Worms, H. (2014). Contribution of p53 to metastasis. Cancer Discov, 4(4), 405-414. doi:10.1158/2159-8290.Cd-13-0136
    Proboka, G., Tilgase, A., Isajevs, S., Zablocka, T., Olmane, E., Rasa, A., & Alberts, P. (2020). Adrenal Gland and Gastric Malignant Melanoma without Evidence of Skin Lesion Treated with the Oncolytic Virus Rigvir. Case Rep Oncol, 13(1), 424-430. doi:10.1159/000506978
    Puca, R., Nardinocchi, L., Porru, M., Simon, A. J., Rechavi, G., Leonetti, C., . . . D'Orazi, G. (2011). Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle, 10(10), 1679-1689. doi:10.4161/cc.10.10.15642
    Quist, S. R., Wang-Gohrke, S., Köhler, T., Kreienberg, R., & Runnebaum, I. B. (2004). Cooperative effect of adenoviral p53 gene therapy and standard chemotherapy in ovarian cancer cells independent of the endogenous p53 status. Cancer Gene Ther, 11(8), 547-554. doi:10.1038/sj.cgt.7700727
    Raaijmakers, M. I. G., Widmer, D. S., Narechania, A., Eichhoff, O., Freiberger, S. N., Wenzina, J., . . . Levesque, M. P. (2016). Co-existence of BRAF and NRAS driver mutations in the same melanoma cells results in heterogeneity of targeted therapy resistance. Oncotarget, 7(47), 77163-77174. doi:10.18632/oncotarget.12848
    Rafei, H., Kantarjian, H. M., & Jabbour, E. J. (2020). Targeted therapy paves the way for the cure of acute lymphoblastic leukaemia. Br J Haematol, 188(2), 207-223. doi:10.1111/bjh.16207
    Raja, J., Ludwig, J. M., Gettinger, S. N., Schalper, K. A., & Kim, H. S. (2018). Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer, 6(1), 140. doi:10.1186/s40425-018-0458-z
    Raje, N., Berdeja, J., Lin, Y., Siegel, D., Jagannath, S., Madduri, D., . . . Kochenderfer, J. N. (2019). Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N Engl J Med, 380(18), 1726-1737. doi:10.1056/NEJMoa1817226
    Raman, S. S., Hecht, J. R., & Chan, E. (2019). Talimogene laherparepvec: review of its mechanism of action and clinical efficacy and safety. Immunotherapy, 11(8), 705-723. doi:10.2217/imt-2019-0033
    Ramezankhani, R., Torabi, S., Minaei, N., Madani, H., Rezaeiani, S., Hassani, S. N., . . . Hajizadeh-Saffar, E. (2020). Two Decades of Global Progress in Authorized Advanced Therapy Medicinal Products: An Emerging Revolution in Therapeutic Strategies. Frontiers in cell and developmental biology, 8, 547653-547653. doi:10.3389/fcell.2020.547653
    Rehman, H., Silk, A. W., Kane, M. P., & Kaufman, H. L. (2016). Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer, 4, 53. doi:10.1186/s40425-016-0158-5
    Rivlin, N., Brosh, R., Oren, M., & Rotter, V. (2011). Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes & cancer, 2(4), 466-474. doi:10.1177/1947601911408889
    Roberts, Z. J., Better, M., Bot, A., Roberts, M. R., & Ribas, A. (2018). Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL. Leuk Lymphoma, 59(8), 1785-1796. doi:10.1080/10428194.2017.1387905
    Russell, L., & Peng, K. W. (2018). The emerging role of oncolytic virus therapy against cancer. Chin Clin Oncol, 7(2), 16. doi:10.21037/cco.2018.04.04
    Sakamoto, K., Morishita, T., Aburai, K., Ito, D., Imura, T., Sakai, K., . . . Sakai, H. (2021). Direct entry of cell-penetrating peptide can be controlled by maneuvering the membrane curvature. Sci Rep, 11(1), 31. doi:10.1038/s41598-020-79518-1
    Saland, E., Boutzen, H., Castellano, R., Pouyet, L., Griessinger, E., Larrue, C., . . . Sarry, J. E. (2015). A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia. Blood Cancer J, 5(3), e297. doi:10.1038/bcj.2015.19
    Scherz-Shouval, R., Weidberg, H., Gonen, C., Wilder, S., Elazar, Z., & Oren, M. (2010). p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci U S A, 107(43), 18511-18516. doi:10.1073/pnas.1006124107
    Scheuermann, R. H., & Racila, E. (1995). CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma, 18(5-6), 385-397. doi:10.3109/10428199509059636
    Senapati, D., Patra, B. C., Kar, A., Chini, D. S., Ghosh, S., Patra, S., & Bhattacharya, M. (2019). Promising approaches of small interfering RNAs (siRNAs) mediated cancer gene therapy. Gene, 719, 144071. doi:10.1016/j.gene.2019.144071
    Shah, N., Chari, A., Scott, E., Mezzi, K., & Usmani, S. Z. (2020). B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia, 34(4), 985-1005. doi:10.1038/s41375-020-0734-z
    Shahryari, A., Saghaeian Jazi, M., Mohammadi, S., Razavi Nikoo, H., Nazari, Z., Hosseini, E. S., . . . Lickert, H. (2019). Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Frontiers in genetics, 10, 868-868. doi:10.3389/fgene.2019.00868
    Shi, W. Y., Xiao, D., Wang, L., Dong, L. H., Yan, Z. X., Shen, Z. X., . . . Zhao, W. L. (2012). Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis, 3(3), e275. doi:10.1038/cddis.2012.13
    Skehel, J. J., Cross, K., Steinhauer, D., & Wiley, D. C. (2001). Influenza fusion peptides. Biochem Soc Trans, 29(Pt 4), 623-626. doi:10.1042/bst0290623
    Sommermeyer, D., Hudecek, M., Kosasih, P. L., Gogishvili, T., Maloney, D. G., Turtle, C. J., & Riddell, S. R. (2016). Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia, 30(2), 492-500. doi:10.1038/leu.2015.247
    Styczyński, J., Tridello, G., Koster, L., Iacobelli, S., van Biezen, A., van der Werf, S., . . . Gratwohl, A. (2020). Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors. Bone Marrow Transplant, 55(1), 126-136. doi:10.1038/s41409-019-0624-z
    Su, X., Chen, W. J., Xiao, S. W., Li, X. F., Xu, G., Pan, J. J., & Zhang, S. W. (2016). Effect and Safety of Recombinant Adenovirus-p53 Transfer Combined with Radiotherapy on Long-Term Survival of Locally Advanced Cervical Cancer. Hum Gene Ther, 27(12), 1008-1014. doi:10.1089/hum.2016.043
    Suck, G., Linn, Y. C., & Tonn, T. (2016). Natural Killer Cells for Therapy of Leukemia. Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie, 43(2), 89-95. doi:10.1159/000445325
    Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 71(3), 209-249. doi:10.3322/caac.21660
    Szabo, E., Rampalli, S., Risueno, R. M., Schnerch, A., Mitchell, R., Fiebig-Comyn, A., . . . Bhatia, M. (2010). Direct conversion of human fibroblasts to multilineage blood progenitors. Nature, 468(7323), 521-526. doi:10.1038/nature09591
    Tan, B. S., Tiong, K. H., Choo, H. L., Chung, F. F., Hii, L. W., Tan, S. H., . . . Leong, C. O. (2015). Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis, 6(7), e1826. doi:10.1038/cddis.2015.191
    Tang, Q., Su, Z., Gu, W., & Rustgi, A. K. (2020). Mutant p53 on the Path to Metastasis. Trends Cancer, 6(1), 62-73. doi:10.1016/j.trecan.2019.11.004
    Taylor, W. R., & Stark, G. R. (2001). Regulation of the G2/M transition by p53. Oncogene, 20(15), 1803-1815. doi:10.1038/sj.onc.1204252
    Teoh, J., Johnstone, T. G., Christin, B., Yost, R., Haig, N. A., Mallaney, M., . . . Larson, R. P. (2019). Lisocabtagene Maraleucel (liso-cel) Manufacturing Process Control and Robustness across CD19+ Hematological Malignancies. Blood, 134(Supplement_1), 593-593. doi:10.1182/blood-2019-127150
    Terzi, M. Y., Izmirli, M., & Gogebakan, B. (2016). The cell fate: senescence or quiescence. Mol Biol Rep, 43(11), 1213-1220. doi:10.1007/s11033-016-4065-0
    Tilgase, A., Grīne, L., Blāķe, I., Borodušķis, M., Rasa, A., & Alberts, P. (2020). Effect of oncolytic ECHO-7 virus strain Rigvir on uveal melanoma cell lines. BMC Res Notes, 13(1), 222. doi:10.1186/s13104-020-05068-4
    Tilgase, A., Patetko, L., Blāķe, I., Ramata-Stunda, A., Borodušķis, M., & Alberts, P. (2018). Effect of the oncolytic ECHO-7 virus Rigvir® on the viability of cell lines of human origin in vitro. J Cancer, 9(6), 1033-1049. doi:10.7150/jca.23242
    Tudzarova, S., Mulholland, P., Dey, A., Stoeber, K., Okorokov, A. L., & Williams, G. H. (2016). p53 controls CDC7 levels to reinforce G1 cell cycle arrest upon genotoxic stress. Cell cycle (Georgetown, Tex.), 15(21), 2958-2972. doi:10.1080/15384101.2016.1231281
    Tyagarajan, S., Spencer, T., & Smith, J. (2020). Optimizing CAR-T Cell Manufacturing Processes during Pivotal Clinical Trials. Mol Ther Methods Clin Dev, 16, 136-144. doi:10.1016/j.omtm.2019.11.018
    Ulasov, A. V., Rosenkranz, A. A., & Sobolev, A. S. (2018). Transcription factors: Time to deliver. J Control Release, 269, 24-35. doi:10.1016/j.jconrel.2017.11.004
    Vairy, S., Garcia, J. L., Teira, P., & Bittencourt, H. (2018). CTL019 (tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia. Drug Des Devel Ther, 12, 3885-3898. doi:10.2147/dddt.S138765
    van der Stegen, S. J. C., Hamieh, M., & Sadelain, M. (2015). The pharmacology of second-generation chimeric antigen receptors. Nature reviews. Drug discovery, 14(7), 499-509. doi:10.1038/nrd4597
    Vitale, M., Di Matola, T., Bifulco, M., Casamassima, A., Fenzi, G., & Rossi, G. (1999). Apoptosis induced by denied adhesion to extracellular matrix (anoikis) in thyroid epithelial cells is p53 dependent but fails to correlate with modulation of p53 expression. FEBS Lett, 462(1-2), 57-60. doi:10.1016/s0014-5793(99)01512-4
    Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307-310. doi:10.1038/35042675
    Vongchan, P., & Linhardt, R. J. (2007). Expression of human liver HSPGs on acute myeloid leukemia. Clin Immunol, 122(2), 194-206. doi:10.1016/j.clim.2006.08.017
    Vousden, K. H., & Prives, C. (2009). Blinded by the Light: The Growing Complexity of p53. Cell, 137(3), 413-431. doi:10.1016/j.cell.2009.04.037
    Wadia, J. S., & Dowdy, S. F. (2002). Protein transduction technology. Curr Opin Biotechnol, 13(1), 52-56. doi:10.1016/s0958-1669(02)00284-7
    Wadia, J. S., Stan, R. V., & Dowdy, S. F. (2004). Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med, 10(3), 310-315. doi:10.1038/nm996
    Walasek, A. (2019). The new perspectives of targeted therapy in acute myeloid leukemia. Adv Clin Exp Med, 28(2), 271-276. doi:10.17219/acem/81610
    Walker, K. K., & Levine, A. J. (1996). Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci U S A, 93(26), 15335-15340. doi:10.1073/pnas.93.26.15335
    Wang, M., Munoz, J., Goy, A., Locke, F. L., Jacobson, C. A., Hill, B. T., . . . Reagan, P. M. (2020). KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N Engl J Med, 382(14), 1331-1342. doi:10.1056/NEJMoa1914347
    Willis, A., Jung, E. J., Wakefield, T., & Chen, X. (2004). Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene, 23(13), 2330-2338. doi:10.1038/sj.onc.1207396
    Xia, Z. J., Chang, J. H., Zhang, L., Jiang, W. Q., Guan, Z. Z., Liu, J. W., . . . Zheng, X. (2004). [Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus]. Ai Zheng, 23(12), 1666-1670.
    Xiao, J., Zhou, J., Fu, M., Liang, L., Deng, Q., Liu, X., & Liu, F. (2017). Efficacy of recombinant human adenovirus-p53 combined with chemotherapy for locally advanced cervical cancer: A clinical trial. Oncology letters, 13(5), 3676-3680. doi:10.3892/ol.2017.5901
    Xu, Z., Ku, X., Tomioka, A., Xie, W., Liang, T., Zou, X., . . . Zhang, Y. (2020). O-linked N-acetylgalactosamine modification is present on the tumor suppressor p53. Biochim Biophys Acta Gen Subj, 1864(8), 129635. doi:10.1016/j.bbagen.2020.129635
    Yan, H., Liu, N., Zhao, Z., Zhang, X., Xu, H., Shao, B., & Yan, W. (2012). Expression and purification of human TAT-p53 fusion protein in Pichia pastoris and its influence on HepG2 cell apoptosis. Biotechnol Lett, 34(7), 1217-1223. doi:10.1007/s10529-012-0905-8
    Yang-Hartwich, Y., Tedja, R., Roberts, C. M., Goodner-Bingham, J., Cardenas, C., Gurea, M., . . . Mor, G. (2019). p53-Pirh2 Complex Promotes Twist1 Degradation and Inhibits EMT. Mol Cancer Res, 17(1), 153-164. doi:10.1158/1541-7786.Mcr-18-0238
    Yang, Y., Kohler, M. E., Chien, C. D., Sauter, C. T., Jacoby, E., Yan, C., . . . Fry, T. J. (2017). TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance. Sci Transl Med, 9(417). doi:10.1126/scitranslmed.aag1209
    Yang, Z., Lee, M. M. M., & Chan, M. K. (2021). Efficient intracellular delivery of p53 protein by engineered protein crystals restores tumor suppressing function in vivo. Biomaterials, 271, 120759. doi:10.1016/j.biomaterials.2021.120759
    Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A., & Oren, M. (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature, 352(6333), 345-347. doi:10.1038/352345a0
    Yu, B., Jiang, T., & Liu, D. (2020). BCMA-targeted immunotherapy for multiple myeloma. J Hematol Oncol, 13(1), 125. doi:10.1186/s13045-020-00962-7
    Yu, W., & Fang, H. (2007). Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets, 7(2), 141-148. doi:10.2174/156800907780058817
    Zenz, T., Krober, A., Scherer, K., Habe, S., Buhler, A., Benner, A., . . . Stilgenbauer, S. (2008). Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood, 112(8), 3322-3329. doi:10.1182/blood-2008-04-154070
    Zhang, Q. N., Li, Y., Zhao, Q., Tian, M., Chen, L. L., Miao, L. Y., & Zhou, Y. J. (2021). Recombinant human adenovirus type 5 (Oncorine) reverses resistance to immune checkpoint inhibitor in a patient with recurrent non-small cell lung cancer: A case report. Thorac Cancer. doi:10.1111/1759-7714.13947
    Zhang, W. W., Li, L., Li, D., Liu, J., Li, X., Li, W., . . . Lam, D. M. (2018). The First Approved Gene Therapy Product for Cancer Ad-p53 (Gendicine): 12 Years in the Clinic. Hum Gene Ther, 29(2), 160-179. doi:10.1089/hum.2017.218
    Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., . . . Ding, S. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4(5), 381-384. doi:10.1016/j.stem.2009.04.005

    QR CODE
    :::