| 研究生: |
謝宏健 Hung-Chien Hsieh |
|---|---|
| 論文名稱: |
以奈米小球提升矽薄膜太陽能電池吸收之研究 Research on the absorption of silicon thin-film solar cell with nanosphere structure |
| 指導教授: |
李正中
Cheng-Chung Lee 陳昇暉 Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 太陽能電池 、物理氣相沉積法 、奈米小球 、單層鋪排 、溶膠凝膠法 、有限時域差分法 |
| 外文關鍵詞: | PVD, thin film solar cell, sol-gel, FDTD, monolayer, nanosphere |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用溶膠-凝膠法在鹼性環境下形成奈米級的小球有成本低且容易大量製造的優點。並將小球以Dip-Coating的方式單層鋪排在玻璃基板上,再利用物理氣相沈積法(PVD)的方式製鍍薄膜太陽能電池的吸收層,相較於目前業界所使用的化學氣相沈積法(CVD)來說,有設備成本低吸無毒的優點。故本文採用射頻磁控濺鍍系統來鍍製薄膜太陽能電池之吸收層。
目前有許多種方式來增加薄膜太陽能電池對太陽光譜的吸收效率,其中texture為一個重要且熱門的研究主題。本文以奈米級的小球作為新式的texture結構並應用在太陽能電池中的吸收層上。借由探討小球的形狀讓光在吸收層中路徑變長使得吸收機率變高進而增加入射光的吸收,由實驗証實在使用小球後比起同製程下無小球結構的矽薄膜在波長550nm~700nm吸收增加的效果特別顯著。其中250nm的矽薄膜搭配250nm的球可以在長波長有6.2倍的增加。
本文中利用觀察SEM的結果來推測矽薄膜的成膜的機制。再利用FDTD軟體建立一個模擬來驗證實驗量測得到的數值。證實使用奈米球的確可以幫助太陽能電池的吸收層得到更多的光,增加吸收量。因此可以在有小球結構下可以讓我們的吸收層厚度變低讓制程時間變短,所須要的厚度變低進而達到成本降低的目的。
Thin film solar cells generated less power per area than traditional silicon cells. In this article, the monolayer of nanospheres synthesized by sol-gel method was applied to be the texture structure of the absorption layer in thin film solar cell. How to improve the efficiency becomes an important topic for researchers.
Sol-gel synthesized the nanospheres has the advantage of produce easily and cheaply. To compare physical vapor deposition (PVD) with chemical vapor deposition (CVD), CVD had disadvantage like high facility cost and using the toxic processing gases such as silane (SiH_4). Reactive RF-magnetron sputter was employed to fabricate the absorption layer of the thin film solar cell.
In this study the absorption was measured by the integrate sphere. To compare the nanosphere structure with the reference structure (without nanospheres), the absorption enhancement in between the wavelength from 550nm to 700nm was simulated and achieved about 3 to 6 times and the mechanism of the deposition was discussed by observing SEM pictures. The simulation was built up and the result shows that the trends of measurement are similar.
By using this new texture structure, the fabrication of the solar cell can reduce the production cost, process time, make the thickness of the absorption layer less than before, and increase efficiency.
[1]韓嘉緯,「以射頻磁控濺鍍法鍍製含氫微晶矽薄膜並探討其應用於膜太陽能電池之可能性」,國立中央大學,碩士論文,2007。
[2]蔡進譯,「超高效率太陽電池-從愛因斯坦的光電效應談起」,物理雙月刊,27卷,5期, 2005。
[3]蘇韋寧,「以脈衝直流磁控濺鍍製作含氫非晶矽薄膜於太陽能電潦之應用」,國立中央大學,論士論文,2007。
[4]Tao Meng et al."Surface texturing by solution deposition for omnidirectional antireflection", APPLIED PHYSICS LETTERS 91,081118,(2007).
[5]Bermel Peter et al." Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals",OPTICS EXPRESS,Vol.15,No.25,2007.
[6]施敏著,半導體元件物理與製作技術,黃調元譯,高立出版社,2007,ISBN 9789573015130.
[7]Nelson Jenny,THE PHYSICS OF SOLAR CELLS,World Scientific Publishing Co.,London,2003. ISBN 1-86094-340-3.
[8]BrinkerJ effrey C.,SOL-GEL SCIENCE,Academic Press,Inc. ,1990,ISBN 0-12-134970-5.
[9]詹佳樺,「溶膠-凝膠法製備聚甲基丙烯酸甲酯/二氧化矽混成體之研究」,國立中央大學,碩士論文, 2001。
[10]YeeK.S,"Numerical solution of initial boundary value problems involving Maxwell''s equations in isotropic media",IEEE Trans.Antennas Propagat.,AP-14 ,302(1966).
[11]王怡喬,"以有限差分時域(FDTD)法模擬一維金屬與介電層光子晶體之電磁波傳輸",國立清華大學,碩士論文, 2004。
[12]RSoft Design Grop,FullWAVE v3.0.1 User Guide,1999-2004
[13]李正中,薄膜光學與鍍膜術,藝軒圖書出版社,第五版,台北,p386-388,2005。ISBN 957-616-884-8.
[14]CIE-130,"Practical Methods for the Measurement of Reflectance and Transmittance",1999.
[15]甘炯耀,「橢圓偏光儀」,行政院國家科學委員會精密儀器發展中心,p43-44,1998。ISBN 957-02-2527-0.
[16]朱正煒,「角度可調式橢圓光譜偏光儀」,行政院國家科學委員會精密儀器發展中心, p45-48,1998。ISBN 957-02-2527-0。
[17]Hishikawa Yoshihiro et al.,"Interference Free Determination of the Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films", Japanese Journal of apply physics, Vol. 30.No.5,May,1991,p1008-1014.
[18]Marvin J. Weber, PhD, HAND BOOK of Optical MATERIALS,p.340-341,CRC PRESS.ISBN 0-8493-3512-4.