跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉建良
Jian-Liang Liu
論文名稱: 準局部能量與參考系之選擇
On quasi-local energy and the choice of reference
指導教授: 聶斯特
James M. Nester
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 95
語文別: 英文
論文頁數: 67
中文關鍵詞: 哈密頓邊界項準局部能量參考系位移向量
外文關鍵詞: displacement vector, Hamiltonian, reference, boundary term, quasi-local energy
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據協變哈密頓方法,我們可以決定引力系統的準局部量。有幾個相依於邊界條件的邊界項是可行的,但其中有一個 (與協變Dirichlet邊界條件相關)有最佳的性質;它給出ADM能量、Bondi能量及能流的正定性。此表示式一如其他表示式一樣也依賴於參考系及位移向量的選擇。如何做出最佳的選擇至今仍不清楚。本文計算幾個例子,包括FRW宇宙、第五類Bianchi模型、及Schwarzschild幾何在三種不同座標系的情形。計算結果顯示:準局部能量並不是唯一決定的,甚至於閔氏時空也能得到非零解。此結果是因為選擇不同參考系的緣故,而對於平直時空,度規張量仍有任意的選擇方式。我們藉由對準局部能量取極值的方式,找到一種決定參考系及位移向量的條件,使能量的表示式只依賴於物理系統,然而參考系的選擇仍有一定的任意性。此能量表示式在Schwarzschild幾何的三個不同形式下皆得到相同的值。


    Using the covariant Hamiltonian approach, we can determine the quasi-local quantities for a gravitating system within a region from an integral over its two-boundary. There are several possible boundary terms associated with different boundary conditions, but there is one (which corresponds to a kind of covariant Dirichlet condition on the metric) which has the best properties; it gives the ADM and Bondi energy and energy flux as well as having a positivity property. Like others this expression depends on the choice of reference configuration and the displacement vector field. It is not yet clear how to best make these choices. Here we calculate several cases including the FRW cosmologies, the Bianchi V model, and the Schwarzschild geometry in three different coordinate systems. The results imply that the quasi-local energy is not uniquely determined, even in Minkowski space one could also get a nonvanishing value. This result comes from the different choices of the reference frame. There is an arbitrary choice for the reference of flat space. By extremizing the quasi-local energy, we found a strategy to choose both the reference and the displacement vector to get the same energy value in the three Schwarzschild geometry cases. Although there are still many choices, it is not quite arbitrary anymore.

    1 Introduction 1 2 Background 4 2.1 First-order Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Hamiltonian formulation . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Application to general relativity . . . . . . . . . . . . . . . . . . . . . 10 3 Calcuations 13 3.1 FRW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Bianchi V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Schwarzschild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4 Eddington-Finkelstein . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Painlev′e-Gullstrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.6 Extremize the energy to restrict the reference . . . . . . . . . . . . . 29 3.6.1 FRW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.6.2 Schwarzschild . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6.3 Eddington-Finkelstein . . . . . . . . . . . . . . . . . . . . . . 34 3.6.4 Painlev′e-Gullstrand . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Conclusion 36 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 A Variation of Einstein-Hilbert action 42 B Mean curvature 45 B.1 FRW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 B.2 Bianchi V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 B.3 Schwarzschild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 B.4 Eddington-Finkelstein . . . . . . . . . . . . . . . . . . . . . . . . . . 49 B.5 Painlev′e-Gullstrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 C Different reference frames 51 C.1 Schwarzschild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 C.2 Eddington-Finkelstein . . . . . . . . . . . . . . . . . . . . . . . . . . 55 C.3 Painlev′e-Gullstrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 C.4 Another choice of reference frames . . . . . . . . . . . . . . . . . . . . 60 C.4.1 Schwarzschild . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 C.4.2 Eddington-Finkelstein . . . . . . . . . . . . . . . . . . . . . . 63 C.4.3 Painlev′e-Gullstrand . . . . . . . . . . . . . . . . . . . . . . . . 65

    [1] C.M. Chen, J. M. Nester and R. S. Tung, “Hamiltonian boundary term and quasilocal energy flux”, Phys. Rev. D 72, 104020 (2005).
    [2] C. M. Chen, J. M. Nester, and R. S. Tung, “Quasilocal energy-momentum for geometric gravity theories”, Phys. Lett. A 203, 5-11 (1995).
    [3] C. M. Chen and J. M. Nester, “Quasilocal quantities for GR and other gravity theories” , Class. Quantum Grav. 16, 1279-1304 (1999).
    [4] C.M. Chen and J.M. Nester, “A Symplectic Hamiltonian Derivation of Quasilocal Energy-Momentum for GR”, Gravitation Cosmol. 6, 257 (2000).
    [5] L. B. Szabados, “Quasi-local energy-momentum and angular momentum in GR: A review article, Living Rev. Relativity 7, (2004), 4. http://www.livingreviews.org/lrr-2004-4.
    [6] T. Regge and C. Teitelboim, “Quasilocal energy and conserved charges derived from the gravitational action”, Phys. Rev. D47, 1407 (1993).
    [7] R. Beig and N. ′O Murchadha, “The Poincar′e Group as the Symmetry Group of Canonical General Relativity”, Ann. Phys. (N.Y.) 174, 463-498 (1987).
    [8] N. ′O Murchadha, L. Szabados, and P. Tod, “Positivity of Quasilocal Mass ”, Phys. Rev. Lett. 92, 259001 (2004).
    [9] M. Liu and S.T. Yau, “Positivity of Quasilocal Mass”, Phys. Rev. Lett. 90, 231102 (2003).
    [10] M. Liu and S.T. Yau, “Positivity of quasi-local mass II ”, J. Amer. Math. Soc. 19, no.1, 181-204 (2006), arXiv:math.DG/0412292.
    [11] J. D. Brown and J. W. York, “Quasilocal energy and conserved charges derived
    from the gravitational action”, Phys. Rev. D 47, 1407-1419 (1993).
    [12] K. Kuchaˇr, “Dynamics of tensor fields in hyperspace. III ”, J. Math. Phys. (N.Y.) 17, 801 (1976).
    [13] L. B. Szabados, “On the roots of the Poincar′e structure of asymptotically flat spacetimes”, Classical Quantum Gravity 20, 2627 (2003).
    [14] R. Sachs, “Gravitational Waves in General Relativity. VIII. Waves in Asymptotically Flat Space-Time”, Proc. R. Soc. A 270, 103 (1962).
    [15] H. Bondi, M. G. J. van der Berg, and A. W. K. Metzner, “Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems”, Proc.
    R. Soc. A 269, 21 (1962).
    [16] J. M. Nester, “General pseudotensors and quasilocal quantities”, Classical Quantum Gravity 21, S261 (2004).
    [17] J. M. Nester, “A manifestly covariant Hamiltonian formalism for dynamical geometry”, Tainan school on Cosmology and Gravitation, 2007/01/14.
    [18] T. Regge and C. Teitelboim, “Role of Surface Integrals in the Hamiltonian Formulation of General Relativity”, Ann. Phys. (N.Y.) 88, 286 (1974).
    [19] C.W. Misner, K.S. Thorne and J.A. Wheeler, “Gravitation” (Freeman, New York, 1973)
    [20] Liang Canbin, Zhou Bin, “Weifenjihe Rumen Yu Guangyixiangduilum” (Beijin Normal University, 2006).
    [21] Ray D’Inverno, “Introducing Einstein’s Relativity” (Oxford: New York, Toronto, 1993).
    [22] R.M. Wald, “General Relativity” (The University of Chicago Press, 1984).
    [23] Edit by J. M. Nester, C. M. Chen, and J. P. Hsu “Gravitation and Astrophysics” (World Scientific 2007).
    [24] C. M. Chen, “Quasilocal Quantities for Gravity Theories”, MSc. Thesis, (National Central University) unpublished (1994).
    [25] C. C. Chang, “The Localization of Gravitational Energy: Pseudotensors and Quasilocal Expressions”, MSc. Thesis, (National Central University) unpublished (1999).
    [26] J. E. Lidsey, D. Wands, E. J. Copeland, “Superstring Cosmology”, Phys. Rept. 337 343-492 (2000), arXiv:hep-th/9909061v2.
    [27] L. B. Szabados, “Two dimensional Sen connections in general relativity”, Class. Quant. Grav. 11, 1833-1846 (1994).
    [28] R. Penrose, “Quasi-Local Mass and Angular Momentum in General Relativity”, Proc. R. Soc. London A381, 53-63 (1982).

    QR CODE
    :::